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Demand surge is understood to be a socio-economic phenomenon of large-scale natural disasters, most
commonly explained by higher repair costs (after a large- versus small-scale disaster) resulting from higher
material prices and labor wages. This study tests this explanation by developing quantitative models for
the cost change of sets, or “baskets,” of repairs to damage caused by Atlantic hurricanes making landfall
on the mainland United States. We define six such baskets, representing the total repair cost, and material
and labor components, each for a typical residential or commercial property. We collect cost data from
the leading provider of these data to insurance claims adjusters in the United States, and we calculate the
cost changes from July to January for nine Atlantic hurricane seasons at fifty-two cities on the Atlantic
and Gulf Coasts. The data show that: changes in labor costs drive the changes in total repair costs;
cost changes can vary significantly by geographic region and year; and cost changes for the residential
basket of repairs are more volatile than the cost changes for the commercial basket. We then propose a
series of multilevel regression models to predict the cost changes by considering several combinations of
the following explanatory variables: the largest gradient wind speed at a city in a hurricane season; the
number of tropical storms in a hurricane season whose center passes within 200 km of a city; and cost
changes in the first two quarters of the year. We also allow the coefficients of the regression model to be
stochastic, varying across groups defined by region of the Southeastern United States and year. Our best
models predict that, for any city on the Gulf or Atlantic Coasts in any hurricane season, the residential
total repair cost changes vary from 0.01 to 0.25, depending on the wind speed and number of storms, with
an uncertainty of 0.1 (two standard errors of prediction) given the wind speed and number of storms. The
commercial total repair cost changes vary from 0.005 to 0.15 with an uncertainty of 0.08. Our models
including wind speed, the number of storms affecting a city, and cost changes in the first half of the year
explain roughly half of the observed variability in cost changes. Additional explanatory variables that
we have not considered may account for the remaining variability. Given these models, however, there is
still considerable uncertainty in their predictions. This uncertainty arises from variations between groups
defined by region and year, not from variations within a given region and year.
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1 Introduction

Demand surge is understood to be a socio-economic phenomenon of large-scale natural disasters in which repair costs
rise, locally and temporarily, through any of several possible demand-related mechanisms. As a result, the repair
cost for a property damaged in a large event exceeds the repair cost for a similar property damaged in a small event,
given the same damage at the two properties. Increased repair costs after past large-scale natural disasters have been
reported in the range of 20 to 50 percent. For example, after the 1994 Northridge Earthquake, insurers observed a
20 percent increase in the costs to settle claims (Kuzak and Larsen, 2005, p. 113). Commercial catastrophe modelers
estimated demand surge of 10 to 40 percent after Hurricane Katrina (Guy Carpenter, 2005). The Australian Securities
& Investments Commission (2007) reported that insurers saw reconstruction costs increase 50 percent after Cyclone
Larry in 2006.

Institutions that indemnify properties exposed to natural disasters, such as insurers, reinsurers, and governments,
pay billions of U.S. dollars in claims after large-scale natural disasters; these payments can be even larger as a result
of demand surge. Anticipating whether demand surge is 20 percent versus 30 percent versus 50 percent can affect how
insurers, reinsurers, and governments plan for and respond to large-scale natural disasters. Understanding the socio-
economic mechanisms of demand surge should result in better predictive models and is presumably a prerequisite
to controlling, and possibly reducing, its magnitude after future disasters. This work studies two of several possible
demand-surge mechanisms.

In previous work, we found that there is no standard, precise definition of demand surge (Olsen and Porter, 2010).
We surveyed the literature on demand surge and identified four types of definitions.

1. Demand surge is the temporary increase in local construction labor wages, material prices, and other specific
costs after a large-scale natural disaster. Different references identified different specific costs. These costs
included: increased construction contractor overhead and profit; possible overpayment by insurers because they
could not verify all claims or they faced political pressure to pay claims quickly; payments for damage not
explicitly covered in an insurance policy; and special repairs required to maintain compliance with current
building codes.

2. Demand surge is the temporary, local increase in construction labor wages and material prices after a large-scale
natural disaster. Here, demand surge is limited to material prices and labor wages, excluding the additional
costs included in the first definition.

3. There is a general increase of reconstruction costs after a large-scale natural disaster, but no explanations
are provided for the increase. In other words, increased costs result from an unidentified and unexplained,
underlying phenomenon.

4. Demand surge is the discrepancy between actual monetary losses and expected (or modeled) losses.

We do not favor any of these definitions, and we do not offer a specific definition of demand surge. The existing
evidence for demand surge does not establish it as a clearly delineated phenomenon. Rather, we understand demand
surge to be a collection of specific, but as yet vaguely defined, socio-economic phenomena of large-scale natural
disasters that result in increased costs to repair an insured property.

We describe the socio-economic phenomena contributing to demand surge as “vaguely defined” because each
definition listed above and found in the demand surge literature is unclear. For example, if a temporary increase in
local labor wages is a real mechanism of demand surge, how far does “local” extend, how long does “temporary” last,
which construction trades must be considered, and what governs the rise of wages? A clear definition for wage-driven
demand surge must at minimum address these questions.

In addition to identifying several definitions of demand surge, we proposed seven general descriptions of socio-
economic mechanisms that could result in increased repair costs after large-scale versus small-scale natural disasters
(Olsen and Porter, 2010). These reasons for demand surge followed from studies of the reconstruction periods after
historical natural disasters, including earthquakes, hailstorms, cyclones, flooding, and wildfires, from the fourteenth,
nineteenth, and twentieth centuries through the present day, in Australia, the United States, the United Kingdom,
and continental Europe. Although the circumstances contributing to increased construction costs were unique to
each disaster, there were common reasons for demand surge when we considered the disasters together. Our seven
possible explanations for demand surge are, briefly: (1) the total amount of repair work; (2) the costs of reconstruction
materials, labor, and equipment; (3) reconstruction timing; (4) construction contractor fees; (5) general economic
conditions; (6) insurance claims handling; and (7) decisions of an insurance company.

Various groups have developed quantitative models for demand surge. We surveyed these models in Olsen and
Porter (2010) and updated our summary in Olsen and Porter (2011). The primary developers of demand surge
models are commercial catastrophe modelers, such as AIR Worldwide, RMS, and EQECAT. These companies provide
quantitative estimates of risk usually resulting from natural hazards for a single property or set of properties. Their
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clients are mostly insurance and reinsurance companies, which are interested in anticipating their monetary losses
in the event of a natural disaster. Although these models are proprietary, the standard model of demand surge
multiplies the ground-up loss by a factor, typically between 1.0 and 1.6. (The ground-up loss is the calculated loss
at a property before applying insurance deductibles, co-payments, or limits.) This multiplicative factor can be based
on the expected loss to the insurance industry as a whole, the affected region, the type of peril, the type of property,
or some combinations of these.

Researchers have repurposed existing, regional economic models or developed index-based models to estimate
demand surge. Regional economic models identify and model distinct sectors of the economy, interactions between
the sectors, and the interactions between economic sectors in different geographic regions. The two most common
types of economic models applied to natural disaster research are input-output and computable general equilibrium
models. (See, for example, Rose (2004) and Okuyama (2007) for descriptions of these models in the context of
natural disasters, and see Hallegatte (2008) for an estimate of demand surge after Hurricane Katrina derived from
an input-output model.)

Researchers at Florida International University developed a demand surge module for the Florida Public Hurricane
Loss Model. According to their 2009 submission to the Florida Commission on Hurricane Loss Projection Methodol-
ogy, the module applies “weighted average demand surge factors” to the loss from each event in the stochastic event
set (International Hurricane Research Center, 2009). The model assumed demand surge is affected by the type of in-
surance coverage, the location of the property within Florida, and the modeled statewide loss without demand surge.
In developing the model, the researchers compared the values of a construction cost index after several hurricanes to
inferred values of the index had no hurricanes occurred. They assumed the discrepancies were entirely attributable
to demand surge. All existing demand surge models are difficult to independently verify and validate because the full
models are not published or because the underlying data are not publicly available or shown with the model.

The work described in this report addresses part of our second proposed explanation for demand surge; we study
the costs of reconstruction material prices and labor wages before and after Atlantic hurricane seasons. Increased
costs of reconstruction materials and labor is the most common explanation for demand surge, and therefore, among
our proposed explanations, it is a good first choice for an in-depth study. Also, data are available on material prices
and labor wages, whereas data pertaining to the other demand surge explanations are not as readily available.

Section 2 describes the hazard, material price, and labor wage data we use. Section 3 develops quantitative models
for the cost change of baskets of repairs along the Atlantic and Gulf Coasts during nine Atlantic hurricane seasons.
This section plots the data, proposes several quantitative models for the cost changes, and evaluates these models.
We end this study with a discussion of our results (Section 4) and a summary of our findings (Section 5).

2 Cost and Hazard Data

To establish how reconstruction material prices and labor wages contribute to demand surge, ideally a researcher
would examine economic data on daily, weekly, or monthly time scales and at a geographic resolution fine enough to
distinguish the region with disaster-induced damage from nearby regions without damage. With this information one
could show how costs change from before an event to immediately after and through the reconstruction phase, while
learning over what geographic area these costs change. By coupling these data with characterizations of the event
(for example, wind speeds, flood depths, earthquake intensities), one might find an appropriate way to distinguish
natural disasters that cause demand surge versus those that do not, or in other words, the intensity and extent of
excitation large enough to induce demand surge. The data just described, however, seem to be unavailable.

The data we use are from two sources: Xactimate (labor and material costs) and the National Hurricane Center
(hurricane tracks and intensities). The data on materials and labor costs from Xactimate are widely used by claims
adjusters in the United States. Although we are limited by the frequency, locations, and choice of materials and labor
collected by others, the use of existing data allows us to compare prices and wages across many historical disasters.
In Section 3 we use observations of tropical storm tracks and intensities from the National Hurricane Center in
conjunction with the Xactimate data.

The economic data used in our analyses were manually entered into databases. They are not electronic copies of
the original source. We checked the data for unusual entries and made corrections as necessary.

2.1 Xactimate

Xactimate is computer software developed and distributed by Xactware Solutions, a company based in Orem, Utah.
Xactware collects pricing data on building repairs, contents replacement, and cleaning costs for more than 470
cities in the United States, Canada, United Kingdom, and Ireland (Xactware, 2011e,d). (At the time of this study,
Xactware did not publish price lists for the United Kingdom and Ireland.) Xactware packages the pricing data into
software appropriate for different applications; Xactimate is the software for estimating claims on property insurance
policies(Xactware, 2011c). According to Xactware: “80 percent of insurance-repair contractors and 16 of the top
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Figure 1: Cities on the Atlantic and Gulf Coasts with data from Xactimate

20—including 9 of the top 10—property insurers use Xactimate to calculate the cost of repairs” (Xactware, 2011a).
Although Xactware was founded in 1986, only data since 2002 are readily available in current versions of Xactimate.
Data in the years 2002 through 2008 are published at the beginning of each quarter, and data since 2009 are published
at the beginning of each month.

Xactware uses the following resources to populate its price lists: “thousands of in-field estimates that are submitted
to Xactware every day (i.e., estimates actually used to settle claims); market surveys of industry professionals;
retail pricing research; unit-price research based on surveys with over 100,000 contractors, insurance carriers, and
independent adjusters; pricing feedback from in-field users; independent pricing verification requests; customer-specific
cost data; catastrophe-specific pricing research; additional research surveys; multiple third-party sources for data such
as workers comp[ensation], federal taxes, state taxes, local taxes, and so on” (Xactware, 2011f). After reviewing the
collected data for quality, Xactware “perform[s] a proprietary cluster analysis on various subsets of that research
to identify the mid-range market price points”1 (Xactware, 2011f). In other words, the price Xactware publishes is
intended to be at the center of its observed prices for a particular item in a given city at the time of publication.

Xactware also cautions its customers to use their knowledge of “local market conditions” when applying the pricing
data: “Xactware makes every effort to ensure pricing information ... represents market costs at the time of publication.
Since actual market prices can vary and may change rapidly, and since many factors can affect the cost of a project
(including—but not limited to—labor, equipment, and material costs as well as the rates and application of sales
tax), we strongly recommend customers monitor their local markets for any such changes and adjust their estimate
pricing as deemed appropriate” (Xactware, 2011b).

We collect a subset of the data Xactimate provides. We select 53 United States cities either on the Atlantic or
Gulf of Mexico Coast or in Iowa. (Figure 1 maps the cities on the Atlantic and Gulf Coasts.) Data from cities near
the Coasts are used to track costs during the 2002 through 2010 Atlantic hurricane seasons. For the purposes of this
study, the city in Iowa represents a location outside the area of study but still in the United States. We collect data
from the first quarter of 2002 through January 2011.

One of us (Porter) chose sets of repair line-items typically performed in reconstruction after natural disasters,
based on his experience and judgment. The sum of the costs for the items in each set forms our basket of repair
costs. For residential properties this set is: 300 square feet (sf) of composition shingle roofing; 100 sf clay tile roofing;
40 sf reglazing; 100 sf installed drywall; 100 sf carpet; and 200 sf sealed and painted wood siding. For commercial
properties this set is: 100 sf 3-ply roofing; 100 sf gravel ballast roofing; 100 sf PVC membrane roofing; 100 sf metal
roofing; 100 sf glass curtain wall; 100 sf installed drywall; 100 sf carpet; and 100 sf sealed and painted wood siding.
Appendix A reproduces Xactimate’s descriptions of these items as of July 2010. We have not compared these baskets
of repair costs to actual insurance claims. We assume our baskets are consistent with the types of repairs needed
after natural disasters, and thus we assume our baskets of repair costs are highly correlated with insurance claims
following natural disasters.

For each repair line item, Xactimate provides several types of costs. The total cost to make a repair is the “remove
& replace” cost, which is the sum of the removal and replacement costs. For each of these two tasks, the cost is

1Note that the “cluster analysis” Xactware performs is not the same as the statistical data analysis known as “cluster analysis.” In
the field of statistics, a cluster analysis identifies subsets of observations that are more alike than different, clustering them into
previously-unidentified groups. (See, for example, Johnson and Wichern (2002, Chapter 12).)
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the sum of: labor, material, and equipment costs; market conditions; labor burden; and taxes.2 We employ three of
these costs: remove & replace, material, and the sum of regular labor and labor burden. Since we have distinct sets
of repairs for residential and commercial properties, we track a total of six baskets of repair costs.

Xactimate reports “hard costs” and “market costs.” The market costs represent costs reported to Xactware in
estimates of repair costs used to settle insurance claims (Xactware, 2009). Xactware also collects data on the same
costs directly from construction materials and equipment suppliers as well as construction contractors. These are the
“hard costs.” In its documentation, Xactware explains that market costs can exceed hard costs for several reasons.
For example, demand for materials or labor exceeds the supply in a city, or there are additional costs for repairs
reported in estimates of repair costs but not reported by materials or equipment suppliers or people familiar with the
construction labor market. In the work described in this report, we consider both hard and market costs.

The Xactimate databases are not complete for all cities at all times. This is a particular problem for many Florida
cities in October 2004. We linearly interpolate missing data between the preceding and succeeding quarter or month,
and we indicate when the data have been interpolated. We expect that a linear interpolation under-estimates the
actual price or wage, since there must have been highly unusual conditions if Xactware was not able to use its routine
procedures to report price and wage data.

2.2 Hurricane Data

For each city where we have data from Xactimate, we find the latitude and longitude from the National Atlas of
the United States (2003). We presume that each city’s coordinates are near its city center, and we do not use any
additional information about the city, such as population, incorporated area, or metropolitan area.

The National Hurricane Center provides observations of tropical storms, including latitude, longitude, maximum
wind speed, minimum central pressure, etc. (Specifically, we use the Extended Best Track File (Demuth et al., 2006).)
For each city where we have price and wage data, we first identify the storms that come within 200 km of the city in
a given hurricane season. We use 200 km because it seems small enough to exclude hurricanes not affecting a city but
large enough to allow for multiple hurricanes affecting a city in a hurricane season. Then we apply the Holland Wind
Profile (Holland, 1980) at each observed point on the tropical storm’s path, calculating the gradient wind speed at a
city resulting from each observation at a known distance from the city center.3

The Holland Wind Profile finds the gradient wind speed, Vg, at a distance, r, from the center of a hurricane. The
profile is:

Vg =

"
AB (pn − pc) exp

`
−A/rB

´
ρrB

+
r2f2

4

#1/2

− rf

2
,

where A = (Rw)B , B = ρe (Vm)2 / (pn − pc), e is the base of natural logarithms, pn is the ambient pressure (pressure
of the outer closed isobar in the Extended Best Track File), pc is the central pressure, ρ = 1.15 kg/m3, f =
2Ω sin (latitude) is the Coriolis frequency, Ω = 7.2921 · 10−5 rad/s, Rw is the radius of maximum wind speed, and Vm
is the maximum wind speed.

We report the maximum gradient wind speed at a city among those calculated for each observation on a tropical
storm’s path, and we define the surface wind speed as 80 percent of the maximum gradient wind speed. If there is
more than one tropical storm within 200 km of a city in a hurricane season, we report the maximum gradient wind
speed among the maximum wind speeds of the individual storms. We use wind speed as a proxy for damage at a
city: data on damage at so many cities after so many tropical storms are not available, and because our analyses are
exploratory, we cannot justify using such detailed information.

We also count the number of tropical storms affecting a city in a particular time period. We define a “storm
affecting a city,” or a “proximate storm,” to be a tropical storm that comes within 200 km of the city irrespective of
any wind speed.

3 Changes in Xactimate Cost Data

In this section we examine the relationship between cost changes in the Xactimate data and observed tropical storms
during the 2002 through 2010 Atlantic hurricane seasons. We first plot the data to develop a qualitative understanding
of possible explanatory variables for repair cost changes. Then we propose a series of quantitative models based on
our available data and our initial understanding. Finally we identify and discuss the best predictive models among
those we propose.

2Xactimate price lists use labor costs for about two dozen types of labor, and Xactimate selects the appropriate type for a particular
line item (Xactware, 2008, p. 2). The labor burden category is a markup additional to the regular labor cost resulting from any
labor costs unique to that repair item or to account for the overhead to employ laborers.

3The gradient wind speed is the wind speed above the hurricane boundary layer, or the wind speed in the absence of friction caused
by interaction with the ground or water surface. It is the wind speed 1–2 km above the surface (J. Done, personal communication,
April 2011).
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The questions one can address with these data should help build a foundational knowledge for demand surge. We
first examine whether cost changes after a large tropical storm exceed the cost changes one would expect in the
absence of such an event. In other words, does there appear to be a cause-and-effect relationship between hurricanes
and unusually large cost changes? If so, we might find a relationship between the intensity of the storm and the
resulting cost changes. Do more intense hurricanes cause larger changes in repair costs? From our previous work and
the work of others, we expect that the intensity of a tropical storm and the number affecting a specific city would
help explain large cost changes. Additional factors on the regional level or at the time of a hurricane season—such
as municipal or state restrictions on labor movement or a pre-existing demand for new construction—might explain
why one city damaged in a large tropical storm has larger cost changes than a similarly damaged city at a different
time or place. We return to these issues in Section 4 after considering the data and developing quantitative models.

As described in Sections 2.1 and 2.2, we process the data from Xactimate and the National Hurricane Center. We
develop several baskets of repair costs, specifically, baskets for the (a) total remove & replace costs, R&R, (b) labor
component of repair costs, LAB, and (c) material component of repair costs, MAT, each for residential (RES) and
commercial (COM) properties. We define a basket cost change, D, as the difference between the final and initial
costs normalized by the initial cost. As an equation,

cost change = D
def
=

(final cost)− (initial cost)

initial cost
.

We know the change in the cost of these six baskets during the following time periods: July to the following January,
∆, (roughly from before to after the Atlantic hurricane season) and incrementally by quarter: from January to April,
∆1; April to July, ∆2; July to October; and October to January. Xactimate provides quarterly data in the years
2002 through 2008 and monthly data afterwards. In order to use data from as many Atlantic hurricane seasons as
possible, we do not consider the monthly cost changes, only the cost changes reported at the beginning of one quarter
to the beginning of another quarter.

For simplicity, we consider only two characteristics of the tropical storms in a given Atlantic hurricane season: the
intensity of each storm and the number affecting a city. A gradient wind speed at the city center is calculated for
each storm that passes within 200 km of a city, and if there is more than one such storm, the reported gradient wind
speed is the largest among the storms.4 A surface wind speed is approximated as 80 percent of the gradient wind
speed. We use surface wind speeds in the data exploration (Section 3.1) and gradient wind speeds in the quantitative
models (Section 3.3). We also count the number of storms passing within 200 km of the city, which we call “proximate
storms.”

Our choice for calculating wind speeds at the cities results in relatively small values. We do not use observations
from instruments at the cities or in their metropolitan areas. Rather, the wind speed at a city is inferred from
observations of the storm system. We expect, however, that the wind speeds we use are highly correlated with
observations at the cities.

3.1 Data Exploration

Figures 2 and 3 show the hard and market cost changes, respectively, from July to the following January of the
baskets of repair costs as functions of the surface wind speed of a proximate storm. Data plotted where the wind
speed is “None” are for cities with no proximate storm. The data points are colored by year, and the shapes of
the symbols correspond to the state in which the city is located. Wind speeds corresponding to Category 1 on the
Saffir-Simpson Hurricane Wind Scale are shaded. To be clear, the tropical storm generating a point in these figures
could have any designation on the Saffir-Simpson Scale at the time of its closest approach to the city. The Category 1
shading is intended as a reference or comparison point for the calculated surface wind speeds, not a categorization of
the storm systems producing the data.

Several observations can be made by comparing the subplots within Figure 2.

• For the remove & replace and labor component baskets, the maximum cost change when there is no proximate
storm is similar to the maximum cost change when there is at least one storm with surface wind speed less than
50 km/hr. In other words, remove & replace and labor component costs can increase by 10–20 percent in the
absence of a tropical storm during a hurricane season. These cost changes exceed 20 percent only if there is at
least one sufficiently intense tropical storm. The range of material component cost changes when there is no
proximate storm is similar to the range when there is at least one storm, independent of wind speed.

• The residential baskets have more extreme cost changes (that is, a larger range of values) than the corresponding
commercial baskets. The costs of residential reconstruction appear more volatile during Atlantic hurricane
seasons than the costs of commercial reconstruction.

4Recall that we use wind speed as a proxy for damage. We assume that the storm with the largest wind speed causes all damage in
a given hurricane season. Since we do not have cost data after each storm, we cannot attribute incremental cost increases within a
season to particular storms.

10



Figure 2: Observed hard cost change from July to January versus wind speed. Symbol colors represent different
Atlantic hurricane seasons, and symbol shapes represent different U.S. states.
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Figure 3: Observed market cost change from July to January versus wind speed. Symbol colors represent different
Atlantic hurricane seasons, and symbol shapes represent different U.S. states.
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• The remove & replace cost changes are driven by the labor, not the material, component. The material cost
changes are well within ± 20 percent for residential properties and well within ± 10 percent for commercial
properties irrespective of a proximate storm. There seems to be little correlation between wind speed and the
change in cost of a material component basket. The pattern of labor cost changes is similar to the remove &
replace cost changes: there is a positive correlation between cost change and wind speed for both basket types.
However, for both residential and commercial, the labor component baskets show more extreme, both positive
and negative, cost changes than the remove & replace baskets.

• The most extreme positive cost changes of the remove & replace and the labor component baskets are exclusively
from Florida in 2004. Observed cost changes in other regions and years are never as large, implying that the
circumstances causing cost changes in Florida in 2004 were unique within the geographic regions and years we
studied.

Finding 1 There seems to be a threshold wind speed above which remove & replace and labor component cost changes
can exceed 20 percent. Below this threshold, there are no observations of cost changes greater than 20 percent. The
threshold value surely depends on the specific metric for wind speed. Using our definition, this threshold is a surface
wind speed of 50 km/hr.

Finding 2 The cost change of the material component baskets appears to be much less sensitive than the other baskets
to wind speed. A prediction of the material component cost change would not be much different given there is at least
one proximate storm, with any wind speed, than a prediction given there is no proximate storm.

Finding 3 The costs of our residential baskets are more volatile than the costs of our commercial baskets during
Atlantic hurricane seasons. Based on these observations, we would expect more extreme, both positive and negative,
cost changes of the residential, compared to the commercial, baskets.

Finding 4 The remove & replace cost changes are driven by the labor component, not the material component.

Finding 5 The most extreme positive cost changes of the remove & replace and the labor component baskets are
exclusively from Florida in 2004.

The only obvious differences between hard cost changes (Figure 2) and the corresponding market cost changes
(Figure 3) are between the labor component baskets. The residential labor component basket has more extremely
positive market cost changes than the corresponding hard cost changes. For example, note the greater number of
market cost changes exceeding 40 percent compared to hard cost changes exceeding 40 percent. Curiously, however,
the commercial labor component basket has more extremely positive hard cost changes than the corresponding market
cost changes. For example, note the greater number of hard cost changes exceeding 40 percent compared to market
cost changes exceeding 40 percent. The pattern of market cost changes is similar to that of the hard cost changes,
although the specific values differ.

Finding 6 (Recall that Xactware collects labor and material costs, “hard costs,” directly from construction contractors
and material suppliers. “Market costs” are labor and material costs derived from as-written estimates of repair costs
for damaged properties reported to Xactware.) Only the labor component cost changes show a clear difference between
hard and market cost changes. The market cost changes of the residential labor component basket tend to be larger
than the hard cost changes. This observation is reversed for the commercial labor component basket: the hard cost
changes tend to be larger than the market cost changes.

Throughout the remainder of this section, we consider only the hard cost changes and not explicitly the market cost
changes. The following statements we make about hard costs can apply to market costs as well, with adjustments of
particular values as appropriate. Corresponding plots for the market cost changes are in Appendix B.

Figures 4 and B.1 show the data from Figures 2 and 3 as box-and-whisker plots instead of scatter plots. We
represent the data for no proximate storm with a box-and-whisker at “None” and data for at least one proximate
storm with three box-and-whiskers according to ranges of wind speed. In these plots—as in all box-and-whiskers in
this report—we define an outlier to be a value greater than q3 + 1.5 (q3 − q1) or less than q1 − 1.5 (q3 − q1), where q1
and q3 are the twenty-fifth and seventy-fifth percentiles, respectively (MathWorks, 2010a).

Some of the observations associated with Figures 2 and 3 are more obvious in Figures 4 and B.1, but we make
further observations about the location and spread of the data by these categories. For five of the baskets—all but
the commercial material component—the median cost change increases with increasing wind speed. On the vertical
scale shown, the trend in median cost change of the commercial material component cannot be discerned. For four
baskets—residential and commercial, remove & replace and labor component—the inter-quartile ranges also increase
with increasing wind speed. Any difference in the range of data by category is not obvious. Generally speaking,
there are fewer outliers at wind speeds above 50 km/hr than at lower wind speeds. The outliers when there are no
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Figure 4: Observed hard cost change from July to January categorized by wind speed. The shaded wind speeds
labeled “Cat. 1” correspond to a Category 1 hurricane on the Saffir-Simpson Scale.
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p-value
Basket 2002 2003 2004 2005 2006 2007 2008

RES R&R 0.3232 0.3842 0.0020 0.0000 0.4497 0.0958 0.0000
COM R&R 0.2742 0.9290 0.0001 0.0000 0.4794 0.0438 0.0001
RES LAB 0.2150 0.6694 0.0020 0.0000 0.3801 0.0655 0.0001
COM LAB 0.4254 0.1536 0.0001 0.0000 0.1274 0.7566 0.0001
RES MAT 0.1120 0.0800 0.0038 0.5170 0.3417 0.0025 0.0006
COM MAT 0.0236 0.0020 0.0173 0.9903 0.2947 0.0025 0.0006

Table 1: P-values from hypothesis tests that observed hard cost changes in a given year do not differ between cities
affected and unaffected by large proximate storms

proximate storms are positive and negative; outliers when there is a proximate storm are almost always positive.
In summary, for these four baskets of repair costs, the distributions of the data change with wind speed. For the
material component baskets, there is no clear pattern to the changes in the distribution of data with wind speed.

Finding 7 For the remove & replace and labor component baskets, both the center and the spread of the distributions
of cost change increase with increasing wind speed. For the material component baskets, there is no clear pattern to
the distributions of cost change with wind speed.

Figures 5 and B.2 categorize the data from Figures 2 and 3 by the number of proximate storms. For four baskets—
residential and commercial, remove & replace and labor component—the median cost change increases with an
increasing number of proximate storms. The distribution of data changes with the number of proximate storms,
but there is no clear pattern to how the distributions change. For the material component baskets, there are some
differences in the distributions of cost change by number of proximate storms, but there is no apparent pattern to
these differences.

Finding 8 For the remove & replace and labor component baskets, the center of the cost change distributions increase
with an increasing number of proximate storms, but there is no discernible pattern to the change in spread of the
distributions with the number of storms. For the material component baskets, there is no pattern in either the center
or spread as a function of the number of proximate storms.

Figures 6 and B.3 re-categorize the data by year and whether there was one or more proximate storm with
wind speed greater than 50 km/hr in that year. The colors in Figures 6 and B.3 are consistent with those in
Figures 2 and 3. We plot the data in this way to learn: for a given year, do the cost changes in cities with a large
proximate storm significantly differ from the cost changes in cities unaffected by a large proximate storm? We use
a two-sample Kolmogorov-Smirnov test of the hypothesis that data from unaffected cities in a given year are drawn
from the same underlying population as data from affected cities in the same year (MathWorks, 2010b). If we cannot
reject this hypothesis at a 5 percent level, we place a rectangle around the box-and-whiskers representing these data,
indicating that the cost changes in unaffected and affected cities in that year may be drawn from the same underlying
population of cost changes. Tables 1 and B.1 show the p-values for all tests on the hard and market costs, respectively.

In some years, there is no significant difference between cost changes in unaffected and affected cities, but in
other years, there is a significant difference. For the remove & replace baskets, there is no significant difference in
cost changes between unaffected and affected cities in 2002, 2003, and 2006 (and, for the residential basket, 2007).
Similarly, for the labor component baskets, there is no significant difference in cost changes between unaffected and
affected cities in 2002, 2003, 2006, and 2007. For the material component baskets, there is no significant difference in
cost changes between unaffected and affected cities in 2005 and 2006 (and, for the residential basket, 2002 and 2003).
This suggests an underlying explanatory variable—such as economic conditions immediately before the hurricane
season—for which year is a proxy; in some years, the presence of a large proximate storm significantly affects cost
changes, but in other years, a large proximate storm may not affect cost changes.

Finding 9 In some years between 2002 and 2010, there are significant differences between cost changes in cities
affected by at least one large proximate storm and cities unaffected by such a storm. These years are generally
consistent across the six baskets of cost changes. Presumably, the year is a proxy for some underlying economic
phenomenon that determines whether large proximate storms will significantly change costs in an affected city that
year.

Figures 7 and B.4 re-categorize the data according to the state where each city is located and whether there is
at least one proximate storm with wind speed greater than 50 km/hr. The symbol shapes representing outliers are
consistent with the shapes in Figures 2 and 3. We perform another round of two-sample Kolmogorov-Smirnov tests,

15



Figure 5: Observed hard cost change from July to January categorized by the number of proximate storms
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Figure 6: Observed hard cost change from July to January categorized by year. Rectangles around box-and-whiskers
indicate that we could not reject the null hypothesis that, in a given year, cost changes in cities affected by
a large proximate storm are drawn from the same population as cost changes in cities unaffected by such a
storm.
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p-value
Basket TX LA MS AL FL GA SC NC VA

RES R&R 0.0003 0.0000 0.0002 0.0003 0.0000 0.3483 0.0392 0.1485 0.1984
COM R&R 0.0000 0.0017 0.0028 0.0001 0.0000 0.3483 0.0023 0.0026 0.9350
RES LAB 0.0001 0.0017 0.0098 0.0002 0.0000 0.7868 0.0346 0.0473 0.1984
COM LAB 0.0001 0.0371 0.0298 0.0003 0.0000 0.1314 0.0067 0.5472 0.5344
RES MAT 0.0000 0.0000 0.6693 0.1766 0.0000 0.1994 0.0236 0.0058 0.5344
COM MAT 0.0020 0.0371 0.6693 0.7096 0.0000 0.1626 0.0158 0.0001 0.1984

Table 2: P-values from hypothesis tests that observed hard cost changes in a given U.S. state do not differ between
cities affected and unaffected by large proximate storms

with a similar null hypothesis that data from unaffected cities in a given state are drawn from the same underlying
population as data from affected cities in that state. Tables 2 and B.2 show the p-values for all tests on the hard and
market costs, respectively.

The cost changes in some states are significantly affected by a large proximate storm, while others are not. For
four baskets—residential and commercial, remove & replace and labor component—states on the Atlantic Coast tend
not to have significantly different cost changes for affected versus unaffected cities. In Georgia and Virginia (and,
for the residential remove & replace and the commercial labor baskets, North Carolina), cost changes when there is
a large proximate storm are not significantly different than cost changes when there is no such storm. This pattern
does not hold for the material component baskets, however. Cost changes between affected and unaffected cities are
not significantly different in Mississippi and Alabama (on the Gulf Coast) and Georgia and Virginia (on the Atlantic
Coast). This observation suggests that the state, or another factor for which state is a proxy, affects the cost change
in a city after a large proximate storm. In other words, there may be regional differences in how large proximate
storms affect cost changes.

Finding 10 For the remove & replace and labor component baskets, states on the Atlantic Coast tend not to have
significantly different cost changes between cities in their borders affected versus unaffected by at least one large
proximate storm. States on the Gulf Coast and Florida, however, tend to have significantly different cost changes
between affected and unaffected cities. For the material component baskets, there is no such regional trend. The state
in which a city is located may be a proxy for a factor that more directly determines cost changes regionally, such as
restrictions on the movement of materials and labor or requirements regarding reconstruction.

Figures 8 and B.5 show quarterly cost changes, as opposed to the cost changes in the second half of the year shown
in all previous figures of this section. For the third and fourth quarters, we again categorize the data according to
the presence of a large proximate storm in the quarter.5 There are missing data points in Xactimate’s database,
especially in Florida at the beginning of the fourth quarter of 2004. To suggest what a complete data set might
show, we linearly interpolate the values of missing data points and also plot the original data set augmented with the
interpolated points in Figures 8 and B.5.

Cost changes in the first two quarters of the year are consistent with cost changes in the last two quarters of the year
given no large proximate storm. The distributions of cost change in these quarters have small means and variances
but many positive or negative outliers. These distributions are distinct from the distributions of cost change given at
least one large proximate storm, which have larger medians and variances but few outliers. This provides evidence
that cost changes given a large proximate storm are different than cost changes given no such storm, independent of
the quarter of the year under consideration. The quarterly distributions in the second half of the year given no large
proximate storm could have been distinct from the distributions in the first half of the year; in this case, it would
have been difficult to associate large cost changes with large proximate storms alone, and not with some unidentified,
independent economic factor of the second half of a calendar year.

Finding 11 Cost changes given a large proximate storm are different than cost changes given no such storm, inde-
pendent of the quarter of the year under consideration. In the Southeastern United States, the distributions of cost
change by quarter are distinct only when there is at least one large proximate storm.

3.2 Grouping the Data

The findings of our data exploration (Section 3.1) suggest that wind speed, number of proximate storms, U.S. state,
and year are all possible explanatory variables to predict the cost change response variable. We expected variables

5Some tropical storms made landfall and affected cities in the United States near the end of the third quarter. The effects of these
storms likely were not included in the costs reported at the beginning of the fourth quarter. Thus, we assign proximate storms from
the last week of the third quarter to the fourth quarter.
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Figure 7: Hard cost change from July to January categorized by U.S. state. Rectangles around box-and-whiskers
indicate that we could not reject the null hypothesis that, in a given U.S. state, cost changes in cities
affected by a large proximate storm are drawn from the same population as cost changes in cities unaffected
by such a storm.
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Figure 8: Observed hard cost change by quarter. When there are missing data in the Xactimate databases, we linearly
interpolate the missing datum from the preceding and succeeding quarters. The data as extracted from
the Xactimate databases form the “actual” data sets, and these data sets augmented with the linearly
interpolated points form the “interpolated” data sets.

20



such as these to affect demand surge based on past, qualitative explanations of demand surge (see Section 1 or
Olsen and Porter (2010)), and the data support an attempt to quantify these relationships. However, we cannot
immediately proceed to a regression analysis of our response variable on the proposed explanatory variables: the
statistical “unit of analysis” is different among the variables. Wind speed, number of proximate storms, and cost
change are quantities measured at each city, but we expect variation from city-to-city, as well as from state-to-state
and from year-to-year. We would like to determine how much of the total variation in cost change is at the city level
versus the state level versus the annual level. To do this we utilize the techniques of multilevel models, also known
as mixed effects models, in our regression analyses.

Generally speaking, data describe some characteristic of a unit of analysis, or an object under study. A unit of
analysis may be a school student, a flower in a garden, or a city on the Gulf or Atlantic Coast of the United States.
An individual can be grouped with other, similar individuals, and comparisons between groups may be of interest,
in addition to comparisons among individuals. Students can be grouped by classroom or teacher, flowers grouped by
species, and cities grouped by state. Groups can be grouped themselves into hierarchies of groups, or individuals can
be cross-classified into several, non-hierarchical groups, until all units of analysis of interest are formed. Classrooms
can be grouped hierarchically by school and then by district. Individual flowers can be grouped by species or by
patch of garden, resulting in a cross-classification scheme. Economic data for cities can be grouped by state or by
year, also resulting in cross-classification. Repeated grouping in this way forms multiple levels of analysis units, and
variability can be studied within each level but also across levels. (See, for example, Gelman and Hill (2007) or Hox
(2010) for further explanations of the theory and applications of multilevel models.)

In our data exploration, we could group the data by year, by state, or by state and year simultaneously. We
immediately find, however, that some groups have little data. Instead of groups by state, we regionalize the states
as the Gulf Coast (Texas, Louisiana, Mississippi, and Alabama; 17 cities), Florida (25 cities), and the Atlantic Coast
(Georgia, South Carolina, North Carolina, and Virginia; 10 cities). Figures 9 and 10 show the residential remove &
replace basket, hard cost change versus gradient wind speed, grouped by these regions and by year. (Data in this
section include interpolated values when the costs are missing in the Xactimate databases.) Plots of the residential
labor component (Figures B.6 and B.7), the commercial remove & replace (Figures B.8 and B.9), and the commercial
labor component data (Figures B.10 and B.11) are similar; we use Figures 9 and 10 as representative of the data for
these other baskets. Similarly, Figures 11 and 12 show the residential material component basket, hard cost change
versus wind speed, grouped by region and by year. Figures B.12 and B.13 plot the commercial material component
data.

Figures 9 and 10 suggest that the primary source of variability in the cost change of the remove & replace or labor
component basket is the year, not the geographic region. In many years, specifically all years except 2004, 2005, and
2008, the cost changes have a relatively small variation about a mean, which is different from year-to-year, and the
cost changes when there is a proximate storm don’t seem different than the cost changes when there is no proximate
storm. In 2004, 2005, and 2008, the cost changes when there is a proximate storm are distinct from those without
a proximate storm. A linear relationship between cost change and wind speed for these data seems justified in the
absence of additional information.

Finding 12 For the remove & replace and labor component baskets, the primary source of variability in the cost
change is the year, not the region of the Southeastern United States.

The city-to-city variability within each of the three regions is somewhat smaller than the region-to-region variability.
In other words, when we compare the subplots within a single row, it can be difficult to distinguish the data’s scatter
within one region from the scatter within another region. A clear distinction is the data from Florida in 2004. Cost
changes in the Atlantic and Gulf States in 2004 do not exceed 20 percent, whereas cost changes in many Florida
cities are at least 20 percent. We also consider whether data from the most northern cities in Florida are distinct
from the peninsular Florida data. The unfilled markers in this set of figures represent Florida cities not on its
peninsula (specifically, Jacksonville, Panama City, Pensacola, and Tallahassee). Given these data, there is no reason
to distinguish peninsular versus Northern Florida cities when analyzing cost changes. Also, consider the data from
2009 (third row of Figure 10), for example. If the data were combined into a single data set, the variance of this
data set would be larger than the variance of the individual data sets. These observations suggest that data within
a given region and year can be modeled with a smaller residual variance than the data without assignment to such
groups.

Finding 13 For groups defined by region and year, the within-group spreads of the available data are much smaller
than the spreads if the data were grouped by year alone. This adds support to the choice of grouping by region and
year, even though the year-to-year variability seems to exceed the region-to-region variability.

Like the remove & replace and labor component baskets, the primary source of variability in the cost change of
material component baskets seems to be the year not the region (Figures 11 and 12). In all years, the material
component cost changes have a relatively small variation about a mean, which is different from year to year, and the
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Figure 9: Observed hard cost change from July to January versus wind speed by U.S. region and year (2002–2006)
for the residential remove & replace basket. Unfilled symbols in the Florida plots (center) are cities in
Northern Florida.
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Figure 10: Observed hard cost change from July to January versus wind speed by U.S. region and year (2007–2010)
for the residential remove & replace basket.
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Figure 11: Observed hard cost change from July to January versus wind speed by U.S. region and year (2002–2006)
for the residential material component basket. Unfilled symbols in the Florida plots (center) are cities in
Northern Florida.

24



Figure 12: Observed hard cost change from July to January versus wind speed by U.S. region and year (2007–2010)
for the residential material component basket.
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cost changes when there is a proximate storm don’t seem different than the cost changes when there is no proximate
storm. A distribution of cost change given the year may be sufficient to model the variability in material component
cost changes, independent of the region of the United States and the wind speed.

Finding 14 For the material component baskets, the cost changes within a year have a small variability about a
mean, independent of wind speed, but the mean value can vary substantially from year to year.

3.3 Quantitative Models

The development of our multilevel, quantitative models of cost changes follows procedures typical of any model
development. In the two previous sections, we explored the data. In this section, we begin by applying a simple
linear regression model and argue that it is inappropriate. Then we propose two sets of multilevel models of the data
and evaluate how well each proposed model represents the available data. The first set of models assumes a constant
residual variance for all groups, and the second set allows the residual variance to be different for different groups.
Finally, we select the best model for each basket, given the data and our proposed models. We follow the suggestions
of Pinheiro and Bates (2000, Chapter 4) for multilevel model development, and all statistical analyses are done with
R (R Development Core Team, 2009).

We can use a simple linear regression equation to model the city-level data, irrespective of U.S. region or year. The
data in this section include interpolated values when the costs are missing in the Xactimate databases. We assume
that the data are independent and identically normally distributed with a mean that is a linear function of gradient
wind speed and a constant variance. As an equation, for city i:

∆i = α+ βwi + εi, (1)

where ∆i is the cost change from July to the following January, α and β are model parameters, wi is the gradient
wind speed, and εi ∼ N

`
0, σ2

´
, read “εi is normally distributed with mean zero and variance σ2.”

Figures 13 and 14 show the residuals of Equation 1 with parameter values estimated for the six baskets. In the
subplots at left, the residuals do not appear to be symmetric about zero, and especially in the labor and material
component baskets, many residuals form clear lines. In the normal probability graphs at right, the residuals clearly
deviate from what we would expect if they were drawn from a normal distribution. Thus, the residuals violate the
assumptions of the simple linear regression model.

More importantly, these plots do not show the flaw in applying a standard regression to grouped data. When we
use standard regression on data that should be grouped, the standard errors of the estimated parameter values are
smaller than they would be with multilevel regression. (See Goldstein (2003, Section 2.7) or Hox (2010, Section 1.2).)
These standard errors are used to test the significance of the parameters in the model. Since the standard error
calculated by standard regression is smaller than the standard error from multilevel regression, a parameter may be
deemed “significant” in the model, when in fact, the data do not support such a finding. This (fictitious) significance
results from the estimation algorithm, not from the data.

We now apply Equation 1 to the data in each region, to the data in each year, and to the data in each combination
of region and year. We do this to suggest how the intercepts and slopes vary by grouping, not to find an appropriate
model of the data. For example, Figures 15 and B.14 through B.18 show Equation 1 applied to the data in each
year. Note that the estimated intercepts and slopes vary by year. The intercept for the 2002, residential remove &
replace data is larger than the intercept in 2003, and the slope in 2004 is larger than the slope in any other year.
The remove & replace and labor component data appear to be independently distributed about the simple regression
line, however, the material component data do not. Figures B.15 and B.18 show systematic deviations from the
simple regression line by U.S. state. These deviations are most obvious in the 2005 residential material component
data. Cost changes in Florida (diamond-shaped symbols) are consistently larger than the values predicted from the
regression using all 2005 data. Cost changes in Texas (six-pointed stars) and in Louisiana (five-pointed stars) are
each consistently smaller than the predicted values.

We can evaluate how the estimated intercepts and slopes vary across different data groupings by comparing their
confidence intervals across groups. Figures 16 and B.19 through B.23 show confidence intervals for the intercepts and
slopes of Equation 1 applied to data grouped by region, by year, and by region and year simultaneously. No single
value for the intercept (or single value for the slope) is inside the confidence intervals of all groups, whether the data
are grouped by region, year, or both. This suggests that both the intercept and slope are stochastic themselves, not
parameters with single values, and the values of the intercept and slope vary by group.

Finding 15 Assuming a linear relationship between wind speed and cost change, no single value of the intercept, nor
single value of the slope, is appropriate for all groups of data. The intercept and slope vary across groups, and lacking
additional, group-level explanatory variables, we assume the intercept and slope are stochastic.
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Figure 13: Residuals of hard cost change from July to January versus wind speed from a simple linear regression for
the residential baskets
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Figure 14: Residuals of hard cost change from July to January versus wind speed from a simple linear regression for
the commercial baskets
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Figure 15: Observed hard cost change from July to January versus wind speed by year (2002–2008) with simple linear
regression for the residential remove & replace basket
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Figure 16: 95 percent confidence intervals for the intercepts and slopes estimated with simple linear regression by
U.S. region (top), by year (middle), or by region and year (bottom), for the residential remove & replace
basket. “AS” is Atlantic States; “FL” is Florida; and “GS” is Gulf States.
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3.3.1 Proposed Models Assuming a Constant Variance

We now propose a series of multilevel models that formalize our suspicions about the structure of the cost change
data. In particular, at the city level, we suspect that the wind speed of a proximate storm, the number of proximate
storms, and cost changes in the first half of the year may predict the cost change in the last half of the year. Formally,
we propose a general model structure to account for these suspicions:

∆i = αjk + βjkwi + γjknci + δjkwinci + φ1∆1i + φ2∆2i + φ3∆1i∆2i + εi, (2)

where

• in year j and region k,2664
αjk
βjk
γjk
δjk

3775 ∼ N
0BB@
2664
µα
µβ
µγ
µδ

3775 ,
2664

σ2
α ραβσασβ ραγσασγ ραδσασδ

ραβσασβ σ2
β ρβγσβσγ ρβδσβσδ

ραγσασγ ρβγσβσγ σ2
γ ργδσγσδ

ραδσασδ ρβδσβσδ ργδσγσδ σ2
δ

3775
1CCA ,

and the covariance matrix represents the variation of intercept and slope coefficients between groups defined by
year and region;

• εi ∼ N
`
0, σ2

´
and represents the residual, or unexplained, variation;

• at city i, ∆i is the basket cost change from July to the following January; wi is the gradient wind speed in
km/hr; nci is the number of proximate storms; ∆1i and ∆2i are the basket cost changes in the first and second
quarters, respectively;

• and µα, µβ , µγ , µδ, σ
2
α, σ2

β , σ2
γ , σ2

δ , ραβ , ραγ , ραδ, ρβγ , ρβδ, ργδ, φ1, φ2, φ3, and σ2 are model parameters.

The subscript jk indicates that the variable is defined for the grouped data from year j and region k.

With its estimated parameter values, the full model of cost change (Equation 2), or any reduced model formed
by setting some parameter values equal to zero, is a proposed model. For any set of proposed models, we would
like to select the model that best represents our available data. There are many techniques for model selection,
but all are based on the premise that a model should be only as complex as justified by the observed data. For
each proposed model, we calculate Akaike’s “an information criterion” (AIC). This criterion compares the model
complexity (measured by the number of parameters) against the likelihood of observing the available data given the
proposed model. As an equation:

AIC = 2K − 2 loge (L) , (3)

where K is the number of model parameters and L is the likelihood function of the proposed model evaluated at
the likelihood’s maximum point. (The details of constructing a likelihood function are not important here. See,
for example, Burnham and Anderson (2002, Chapters 1–2), for a complete discussion of the likelihood function and
model selection techniques.) Calculating AIC for each proposed model allows us to rigorously compare its complexity
to the likelihood of observing the available data. Ideally, a proposed model should have few parameters and a large
likelihood, and thus the “best” model, among those proposed, has the smallest AIC value.

We use an iterative process to generate proposed models for the cost change of each of the six baskets of repair
costs. We first apply Equation 2 to the data, finding the Student’s t-value for each coefficient and the AIC value for
the model.6 We then remove the explanatory variable whose coefficient has the smallest absolute t-value, and we
calculate the new Student’s t-values and AIC value for the reduced model. We continue this process until we find the
combination of explanatory variables that has the smallest AIC value. Then, we consider models where the intercept
and coefficients are not stochastic, if these parameters remained in the reduced model. For example, we set αjk = α,
a deterministic value, and thus σ2

α = 0. We try different combinations of deterministic and stochastic coefficients
until we find one that minimizes AIC among those reduced from the full model in Equation 2. A model we have not
yet considered may have an even smaller AIC value.

Tables 3 and B.3 through B.7 show our proposed models and the log-likelihood (that is, loge (L) in Equation 3)
and AIC value for each model. Following Burnham and Anderson (2002), we also report the difference between each

6When calculating AIC values, we use full, not restricted, maximum likelihood estimation. Full maximum likelihood estimation allows
us to compare models that differ in the deterministic part as well as the stochastic part (Hox, 2010, Section 3.2.3). After we select
the best combination of explanatory variables—that is, the best reduced model—we use restricted maximum likelihood to estimate
parameter values and standard errors of the estimates. The restricted maximum likelihood method produces estimates with less
bias than those estimated using the full maximum likelihood method (Hox, 2010, Section 3.1.1).
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model’s AIC value and the minimum AIC value over the proposed models in each table, ∆AIC, and we calculate the
weight for each model as:

weight =
exp

`
− 1

2
∆AIC

´PM
m=1−

1
2
∆AICm

,

where M is the number of proposed models for a basket of repair costs. In the tables, the proposed models are
ordered by increasing AIC values. Burnham and Anderson (2002, Section 2.6) suggest that a model with ∆AIC

roughly between 0 and 2 has “substantial” empirical support. Using this guideline, we find that several proposed
models for each basket of repair costs can have substantial support. We consider the proposed models for each basket,
and report the model with the smallest AIC value, in the following paragraphs.

32



C
it

y-
le

ve
l

m
od

el
L

og
-l

ik
el

ih
oo

d
A

IC
∆

A
IC

w
ei

gh
t

α
j
k

+
δw

i
n
c
i

+
ε i

3
1
6
.1

-6
2
4
.3

0
.0

0
.4

1
8
9

α
j
k

+
δ j
k
w
i
n
c
i

+
ε i

3
1
7
.7

-6
2
3
.4

0
.9

0
.2

6
7
1

α
j
k

+
δ j
k
w
i
n
c
i

+
φ

2
∆

2
i

+
ε i

3
1
8
.5

-6
2
3
.0

1
.3

0
.2

1
8
7

α
j
k

+
δ j
k
w
i
n
c
i

+
φ

1
∆

1
i

+
φ

2
∆

2
i

+
ε i

3
1
8
.7

-6
2
1
.3

3
.0

0
.0

9
3
5

α
j
k

+
β
j
k
w
i

+
δ j
k
w
i
n
c
i

+
φ

1
∆

1
i

+
φ

2
∆

2
i

+
ε i

3
1
8
.8

-6
1
3
.5

1
0
.8

0
.0

0
1
9

α
j
k

+
β
j
k
w
i

+
γ
j
k
n
c
i

+
δ j
k
w
i
n
c
i

+
φ

1
∆

1
i

+
φ

2
∆

2
i

+
φ

3
∆

1
i
∆

2
i

+
ε i

3
1
9
.1

-6
0
2
.1

2
2
.2

0
.0

0
0
0

α
+
δ j
k
w
i
n
c
i

+
ε i

2
9
8
.1

-5
8
8
.3

3
6
.0

0
.0

0
0
0

T
a
b
le

3
:

F
ir

st
se

t
o
f

p
ro

p
o
se

d
m

o
d
el

s
a
n
d

th
ei

r
A

IC
va

lu
es

fo
r

h
a
rd

co
st

ch
a
n
g
e

fr
o
m

J
u
ly

to
J
a
n
u
a
ry

o
f

th
e

re
si

d
en

ti
a
l

re
m

ov
e

&
re

p
la

ce
b
a
sk

et

33



For the residential remove & replace basket, three of the seven proposed models have substantial support. These
three models include: a stochastic intercept; wind speed (w) crossed with the number of proximate storms (nc) as
an explanatory variable but not either of the two variables alone; and the third model also includes the cost change
in the second quarter. The two models with the smallest AIC values differ only in the coefficient of the cross term.
In the first model, this coefficient is deterministic, while in the second model, the coefficient is stochastic. The model
with the smallest AIC value is:

∆RES R&R
i = αjk + δwinci + εi,

with the following estimates of parameter values and standard errors in parentheses:

• cµα = 0.04262 (0.01161), σ2
α = 0.001946;

• bδ = 0.0001888 (0.00002867);

• and σ2 = 0.001115.

Throughout this report, we indicate parameter values estimated from the available data with a “hat.”
For the residential labor component, three of the six proposed models have substantial support. These three models

include only wind speed and the number of proximate storms as separate explanatory variables, and the first two
models also include the cost change in the second quarter. The two models with the smallest AIC values have a
stochastic coefficient for the number of proximate storms and differ in the coefficient of the wind speed variable. This
coefficient is deterministic in the first model and stochastic in the second model. The model with the smallest AIC
value is:

∆RES LAB
i = βwi + γjknci + φ2∆2i + εi,

with the following estimates of parameter values and standard errors in parentheses:

• bβ = 0.0007093 (0.0001692);

• cµγ = 0.006507 (0.01401), σ2
γ = 0.001473;

• cφ2 = 0.4836 (0.2919);

• and σ2 = 0.005112.

For the residential material component, two of the seventeen proposed models have substantial support. These two
models are reduced from Equation 2 by removing the term for cost change in the first quarter. The first model has
a deterministic coefficient for the cross term of wind speed and the number of proximate storms, while the second
model has a deterministic coefficient for the number of proximate storms. The model with the smallest AIC value is:

∆RES MAT
i = αjk + βjkwi + γjknci + δwinci + φ2∆2i + φ3∆1i∆2i + εi,

with the following estimates of parameter values and standard errors in parentheses:

• cµα = 0.02909 (0.01450), σ2
α = 0.003172;

• cµβ = 0.00009831 (0.00006171), σ2
β = 0.00000002228;

• cµγ = 0.008341 (0.003595), σ2
γ = 0.00003217;

• dραβ = −0.333, dραγ = 0.649, dρβγ = 0.257;

• bδ = −0.00004150 (0.00003015);

• cφ2 = −0.6811 (0.1242), cφ3 = −9.960 (4.972);

• and σ2 = 0.00004536.

For the commercial remove & replace basket, three of the twelve proposed models have substantial support. The
three models only include terms for the intercept, wind speed, and the number of proximate storms. They differ in
whether the coefficients of these terms are deterministic or stochastic. In the first model, the intercept is deterministic
while the two slopes are stochastic. In the second model, the intercept and the number of proximate storms coefficient
are deterministic, and the wind speed coefficient is stochastic. In the third model, the number of proximate storms
coefficient is deterministic, and the intercept and wind speed coefficient are stochastic. The model with the smallest
AIC value is:

∆COM R&R
i = α+ βjkwi + γjknci + εi,

with the following estimates of parameter values and standard errors in parentheses:
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• bα = 0.01075 (0.005553);

• cµβ = 0.0001377 (0.00007725), σ2
β = 0.00000004489;

• cµγ = 0.001830 (0.003541), σ2
γ = 0.00002657;

• dρβγ = 1.000;

• and σ2 = 0.0003482.

For the commercial labor component, three of the nine proposed models have substantial support. The three
models all have intercept and wind speed terms, but they differ by including (or not) terms for cost changes in the
first half of the year. The first model does not include cost changes from the first half of the year. The second model
includes the cost change in the second quarter, and the third model includes a cross term of cost changes in the first
and second quarters. The coefficients in the first model are stochastic. The model with the smallest AIC value is:

∆COM LAB
i = αjk + βjkwi + εi,

with the following estimates of parameter values and standard errors in parentheses:

• cµα = 0.02409 (0.01398), σ2
α = 0.0009932;

• cµβ = 0.0004050 (0.0002065), σ2
β = 0.0000002853;

• dραβ = 1.000;

• and σ2 = 0.002835.

For the commercial material component, three of the seventeen proposed models have substantial support. The
third model is reduced from the full model in Equation 2 by only removing the variable for the number of proximate
storms. In the first model, the coefficient of the cross term for wind speed and the number of proximate storms is
deterministic while all other stochastic coefficients in the full model remain so. The second model is the unreduced,
full model. The model with the smallest AIC value is:

∆COM MAT
i = αjk + βjkwi + γjknci + δwinci + φ1∆1i + φ2∆2i + φ3∆1i∆2i + εi,

with the following estimates of parameter values and standard errors in parentheses:

• cµα = 0.005629 (0.003143), σ2
α = 0.0001504;

• cµβ = 0.000004918 (0.00001385), σ2
β = 0.000000001476;

• cµγ = 0.0002304 (0.0007453), σ2
γ = 0.000001688;

• dραβ = −0.035, dραγ = 0.291, dρβγ = 0.714;

• bδ = −0.000001770 (0.000006289);

• cφ1 = −0.1326 (0.1097), cφ2 = −0.3804 (0.1771), cφ3 = 92.60 (39.01);

• and σ2 = 0.000001684.

We now evaluate the model with the smallest AIC value for each of the six baskets of repair costs. Figures 17 and 18
show residual plots of these models applied to their corresponding data sets. The residuals of the models are not
symmetric about zero. The remove & replace and labor component models tend to under-predict the cost change.
The residuals of labor and material component models are clustered in the plots of residual versus predicted value,
and they clearly deviate from a normal distribution when plotted on a normal probability scale. These residuals look
worse than the residuals from applying a simple linear regression model (compare with Figures 13 and 14). However,
the data may not violate the assumptions of the multilevel regression, as they do in the simple linear regression.
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Figure 17: Residuals of hard cost change from July to January versus wind speed from the model with the smallest
AIC value in the first set of multilevel regression models for the residential baskets
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Figure 18: Residuals of hard cost change from July to January versus wind speed from the model with the smallest
AIC value in the first set of multilevel regression models for the commercial baskets
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3.3.2 Proposed Models Assuming a Group-Dependent Variance

The multilevel regression in Equation 2 assumes that, within a group (defined as cities in year j and region k), the
data are independently and identically normally distributed about the mean value, and the within-group variance, σ,
is constant and has the same value for all groups. However, Figures 15 and B.14 through B.18 suggest that σ varies
between groups. We can allow this variation by proposing a second general form for the cost change of a basket of
repair costs:

∆i = αjk + βjkwi + γjknci + δjkwinci + φ1∆1i + φ2∆2i + φ3∆1i∆2i + εjk, (4)

where

• in year j and region k, αjk ∼ N
`
µα, σ

2
α

´
, βjk ∼ N

`
µβ , σ

2
β

´
, γjk ∼ N

`
µγ , σ

2
γ

´
, δjk ∼ N

`
µδ, σ

2
α

´
, and αjk,

βjk, γjk, and δjk are independently distributed;

• εjk ∼ N
`
0, σ2

jk

´
and represents the residual, or unexplained, variation within group jk;

• µα, µβ , µγ , µδ, σ
2
α, σ2

β , σ2
γ , σ2

δ , φ1, φ2, φ3, and σ2
jk are model parameters;

• and all other symbols are defined after Equation 2.

Note that the only differences between Equations 2 and 4 are the distributions of the stochastic coefficients and
different residual variances for different groups. We assume the stochastic coefficients are independently distributed
because, when we allowed them to be jointly distributed, the solutions did not converge.

We again propose a series of models, now based on Equation 4. Tables 4 and B.8 through B.12 show the proposed
models, as well as their log-likelihoods, AIC values, differences between each model’s AIC and the minimum AIC,
and model weights. As before, the models with the smallest AIC values are at the top of each table, and for some
baskets of repair costs, more than one model has “substantial empirical support.” The AIC values in the second sets
of proposed models are all smaller than the smallest AIC values in the corresponding first sets of models.
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We deem the best models to be those with the smallest AIC values among the two sets of proposed models. We
have no reason to select a model with substantial support but not with the smallest AIC value. The best models are:

∆RES R&R
i = αjk + βwi + γnci + δwinci + φ1∆1i + εjk; (5)

∆RES LAB
i = α+ βjkwi + γnci + δwinci + φ2∆2i + εjk; (6)

∆RES MAT
i = αjk + φ1∆1i + φ2∆2i + φ3∆1i∆2i + εjk; (7)

∆COM R&R
i = αjk + βwi + γnci + δwinci + φ2∆2i + φ3∆1i∆2i + εjk; (8)

∆COM LAB
i = αjk + γnci + δwinci + φ1∆1i + φ2∆2i + εjk; and (9)

∆COM MAT
i = αjk + φ1∆1i + φ2∆2i + φ3∆1i∆2i + εjk. (10)

Table 5 shows the estimated parameter values (except σjk) for the best models.

Finding 16 The best models, among those proposed, have a group-dependent variance. Although the models are more
complex because each group has a different variance, the additional complexity is justified by the available data.

Finding 17 For the best models of the remove & replace and the labor component cost changes, wind speed, number
of proximate storms, and a cost change in the first half of the year are all significant explanatory variables. The
intercept is stochastic for the residential remove & replace, commercial remove & replace, and the commercial labor
component models, while the slope is stochastic for the residential labor component model.

Finding 18 For the best models of the material component cost changes, wind speed and the number of proximate
storms are not significant explanatory variables, whereas cost changes in the first half of the year are significant
explanatory variables. The intercepts of these models are stochastic across the groupings by region and year.

40



R
E

S
R

&
R

R
E

S
L

A
B

R
E

S
M

A
T

C
O

M
R

&
R

C
O

M
L

A
B

C
O

M
M

A
T

cµ α
0
.0

7
7
7

(0
.0

1
5
2
)

0
.0

2
6
9

(0
.0

1
5
6
)

0
.0

3
9
3

(0
.0

1
2
9
)

0
.0

4
1
0

(0
.0

0
7
6
4
)

0
.0

6
6
2

(0
.0

2
0
2
)

0
.0

0
6
7
6

(0
.0

0
3
1
8
)

σ
α

0
.0

4
5
7

0
.0

5
3
2

0
.0

2
8
7

0
.0

8
0
3

0
.0

1
3
1

cµ β
-0

.0
0
0
2
6
2

(0
.0

0
0
0
8
9
2
)

0
.0

0
0
3
0
5

(0
.0

0
0
2
6
9
)

-0
.0

0
0
1
4
6

(0
.0

0
0
0
3
8
3
)

σ
β

0
.0

0
0
7
3
4

cµ γ
-0

.0
2
1
1

(0
.0

0
9
4
8
)

-0
.0

0
8
5
1

(0
.0

1
5
5
)

-0
.0

1
5
0

(0
.0

0
3
0
3
)

-0
.0

1
7
2

(0
.0

0
3
0
3
)

σ
γ cµ δ

0
.0

0
0
3
2
0

(0
.0

0
0
0
8
9
2
)

0
.0

0
0
1
9
9

(0
.0

0
0
1
7
3
)

0
.0

0
0
1
8
1

(0
.0

0
0
0
3
7
3
)

0
.0

0
0
2
0
0

(0
.0

0
0
0
2
3
2
)

σ
δ c φ 1

-0
.1

8
0

(0
.0

0
2
4
4
)

0
.6

2
0

(0
.1

4
5
)

0
.1

6
0

(0
.0

3
7
3
)

-0
.1

1
7

(0
.0

4
6
7
)

c φ 2
0
.4

4
1

(0
.0

3
5
2
)

-0
.2

8
8

(0
.0

6
6
6
)

-0
.1

9
4

(0
.0

2
6
6
)

-0
.1

4
4

(0
.0

5
2
0
)

-0
.7

8
4

(0
.0

9
1
4
)

c φ 3
-2

0
.1

(4
.3

9
)

4
.6

5
(0

.8
7
8
)

4
0
.0

(1
7
.5

)

T
a
b
le

5
:

E
st

im
a
te

d
p
a
ra

m
et

er
va

lu
es

a
n
d

st
a
n
d
a
rd

er
ro

rs
in

p
a
re

n
th

es
es

fo
r

th
e

b
es

t
m

o
d
el

s
o
f

h
a
rd

co
st

ch
a
n
g
e

fr
o
m

J
u
ly

to
J
a
n
u
a
ry

fo
r

a
ll

b
a
sk

et
s

o
f

re
p
a
ir

co
st

s

41



RES R&R RES LAB RES MAT COM R&R COM LAB COM MAT

Mean 0.024194 0.051462 0.0066834 0.012046 0.032968 0.0013261
Median 0.017049 0.038829 0.0051755 0.0092433 0.0243 0.0010318
Std. dev. 0.019751 0.038362 0.0052638 0.010916 0.029729 0.0011302
Skewness 1.2319 1.4119 0.59506 0.77689 1.0956 0.7814

Table 6: Statistics of the observed values of σjk

Distribution Param. RES R&R RES LAB RES MAT COM R&R COM LAB COM MAT

Log-normal
m -4.2843 -5.0337 -3.3829 -3.9739 -5.5095 -7.3921
s 1.7245 1.382 1.3025 1.3158 1.2884 2.1754

Pareto
k -0.31957 -0.27659 -0.31352 -0.19903 -0.59605 -0.59512
s 0.032175 0.015582 0.067192 0.039683 0.011181 0.0022889

Weibull
a 0.024951 0.012003 0.055151 0.033497 0.0069897 0.0012921
b 1.1077 0.99108 1.2977 1.0429 1.1517 0.92693

Table 7: Estimated parameter values for parametric distributions of σjk

For each of the seventeen groups in our available data, the multilevel regression calculates σjk. Table 6 presents
statistics of the observed σjk, specifically the sample mean, median, standard deviation, and skewness. Figure 19
shows the observed distributions of σjk, as well as three parametric distributions—log-normal, Pareto, and Weibull—
with parameter values estimated from the observed σjk-distributions. The parametric probability density functions
are:

flog-normal (σjk; m, s) =
1

σjks
√

2π
exp

»
− (loge σjk −m)2

2s2

–
;

fPareto (σjk; k, s) =

(
k sk

(σjk)k+1 for σjk > s,

0 for σjk < s; and

fWeibull (σjk; a, b) =

(
b
a

`σjk

a

´b−1
exp

“
−σjk

a

”b
for σjk ≥ 0,

0 for σjk < 0.

The left-hand side of these equations is read, for example: “the Weibull probability density function, f , is a function
of σjk with parameters a and b.” Table 7 lists the estimated parameter values for the log-normal, Pareto, and Weibull
distributions applied to the observed σjk-distributions. We know of no theoretical reason to prefer one parametric
distribution of σjk over another. We find estimated parameter values of these distributions in order to simulate the
distributions of future cost changes.

3.4 Simulation of Future Cost Changes

In the previous sections, we found the best models, among those proposed, for the cost change of each basket of repair
costs (Equations 5 through 10). We now use these models to simulate cost changes given at least one proximate storm
at any United States city along the Atlantic or Gulf coasts in any future Atlantic hurricane season. (Note that the
models do not predict the cost change in the absence of a proximate storm.) Needless to say, these simulations are
based on the experience of only seven past hurricane seasons. Expectations of future cost changes based on these
models are valid only if we assume: that the underlying economic processes resulting in repair costs are stationary
with respect to year and region of the Southeastern United States; and that the observed variability of data from
these seven seasons is representative of the variability for all future hurricane seasons.

We simulate the cost change of each basket over a range of gradient wind speeds and number of proximate storms.
For each simulation, we first sample from the distributions of the stochastic parameters. These parameters, estimated
values, and assumed distributions are defined in Equations 5 through 10 and Tables 5 and 7. We assume a Pareto
distribution for σjk in these simulations. When cost changes in the first half of the year appear in the model, we use
the median values from our available data: ∆1 = 0.004235 (RES R&R); ∆2 = 0.009674 (RES LAB); ∆1 = 0.001310,
∆2 = 0.01218, and ∆1∆2 = 0.00008100 (RES MAT); ∆2 = −0.0004080 and ∆1∆2 = 0.000007000 (COM R&R);
∆1 = 0.009926 and ∆2 = 0.01527 (COM LAB); and ∆1 = −0.0008180, ∆2 = −0.0004080, and ∆1∆2 = 0.000007000
(COM MAT). We consider gradient wind speeds in the range 10–180 km/hr (in increments of 5 km/hr) and for one
to five proximate storms (in increments of 0.1 storms). For each combination of wind speed and number of proximate
storms, we simulate the cost change 1000 times. Figures 20 and 21 plot the mean and standard deviation of the
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Figure 19: Observed σjk-distributions and log-normal, Pareto, and Weibull distributions fit to the observations
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1000 simulations evaluated at each combination of wind speed and number of proximate storms for the residential
and commercial baskets of repair costs, respectively.

The means and standard deviations in Figures 20 and 21 vary with wind speed and the number of storms as a
result of the assumed functional forms of the best models. For higher wind speeds and more proximate storms, the
cost changes of the remove & replace and labor component baskets are largest. The cost changes of the material
component baskets are constant with wind speed and the number of proximate storms. The uncertainties of the
simulated cost changes are essentially constant for the remove & replace and material components baskets (and the
commercial labor component basket), but the uncertainties of the simulated cost changes of the residential labor
component basket increase with increasing wind speed. The cost change of the residential remove & replace basket
varies from roughly 0.01 to 0.25, depending on wind speed and the number of proximate storms. The uncertainty
about any specific cost change prediction (two standard errors of prediction) is roughly 0.1. The cost change of the
commercial remove & replace basket varies from roughly 0.005 to 0.15, with an uncertainty of roughly 0.08.

Finding 19 Assuming median values for the cost changes in the first half of the year, the best model simulates cost
changes of the residential remove & replace basket between 0.01 and 0.25, depending on the given wind speed and
number of proximate storms, with two standard errors of prediction equal to 0.1. The best model simulates cost
changes of the commercial remove & replace basket between 0.005 and 015, with two standard errors of prediction
equal to 0.08.

Finding 20 The uncertainty in simulated values of the cost change of the residential labor component basket increases
with increasing wind speed, but the uncertainty in simulated values of the five other baskets are essentially constant
with wind speed and the number of proximate storms.

We can also identify whether the uncertainties given wind speed and the number of proximate storms result from
differences between groups or from unexplained variation. For example, consider the model for the residential remove
& replace basket of repair costs (repeated here):

∆RES R&R
i = αjk + βwi + γnci + δwinci + φ1∆1i + εjk.

The variance is:

Var
h
∆RES R&R
i

i
= Var [αjk + εjk]

= Var [αjk] + Var [εjk] .

In the simulations shown in Figure 20, the variances for simulations of the residential remove & replace basket
cost changes range from 0.00210 to 0.00282, depending on wind speed and the number of storms. Returning to
the original data, the variance of the observed cost changes of the residential remove & replace basket is 0.00536.
Thus, our best model accounts for 47.4 to 60.8 percent of the variance in the data. The variance of αjk, σ2

α, ranges
from 0.00178 to 0.00241, which is consistent with σ2

α = 0.00209 in Table 5. The variance of εjk, σ2
jk, ranges from

0.000310 to 0.000413, which is consistent with σ2
jk = 0.000390 in Table 6. Of the variance in a prediction of the cost

change of the residential remove & replace basket, 82 to 87 percent is from the variance of the intercept.
We repeat the above analysis for the remaining five baskets. From the simulations shown in Figures 20 and 21, the

variances for predictions of cost change are: 0.000137–0.0189 (RES LAB); 0.00387–0.00503 (RES MAT); 0.00134–
0.00186 (COM R&R); 0.00560–0.00753 (COM LAB); 0.000146–0.000207 (COM MAT). The variances of the original
data and the percentages of these variances accounted for in the model are: 0.0201, 6.11–99.3 percent (RES LAB);
0.00259 and the variance of the model exceeds the variance of the data by 49.4–94.2 percent (RES MAT); 0.00227,
18.0–40.9 percent (COM R&R); 0.0176, 57.1–68.1 percent (COM LAB); 0.000140 and the variance of the model
exceeds the variance of the data by 4.29–47.9 percent (COM MAT). Generally speaking, our models for the remove
& replace and labor component baskets account for about half of the variance of the observed data, and our models
for the material baskets have a larger variance than that of the observed data.

Finding 21 When we use the best models to simulate future cost changes of the remove & replace and labor component
baskets, the variances of the simulated data are roughly half of the variances of the observed data. There is more
observed variability in the remove & replace and labor component data than we can simulate with the best models.
For the material component baskets, the variances of the simulated data exceed those of the observed data.

The following numbers are the percentages of the variance in a prediction of cost change from the variance of the
intercept (or slope in the RES LAB model): 33.0–99.5 (RES LAB); 59.1–68.3 (RES MAT); 45.6–56.7 (COM R&R);
99.6–99.7 (COM LAB); 99.3–99.5 (COM MAT). Most of the variance in a predicted value comes from uncertainty
between groups by U.S. region and year, not from uncertainty within the groups. This group-to-group uncertainty
remains after our models account for wind speed, the number of hurricanes, and cost changes in the first half of the
year.
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Figure 20: Simulations of cost changes from July to January for the residential baskets of repair costs. Plots on the
left show the expected value of the simulation as a function of gradient wind speed and the number of
proximate storms from 1000 simulations at each combination of wind speed and number of storms. Plots
on the right show the standard deviations of these simulations.
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Figure 21: Simulations of cost changes from July to January for the commercial baskets of repair costs. Plots on the
left show the expected value of the simulation as a function of gradient wind speed and the number of
proximate storms from 1000 simulations at each combination of wind speed and number of storms. Plots
on the right show the standard deviations of these simulations.
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Finding 22 The primary source of uncertainty in a prediction from our best models is the stochastic parameters, not
the residual variation. If we know the parameter values for a given group with certainty, we can make a relatively
precise prediction of the cost change. However, since the parameter values are so uncertain for a particular region
and year, a prediction of cost change for that group is relatively imprecise.

4 Discussion

Although the data used in this study are the best available to us, they are not ideal. In most years, the Xactimate
data are reported at the beginning of each quarter; data since 2008 are reported at the beginning of each month. The
Atlantic hurricane season is officially from 1 June to 30 November, but most hurricanes happen in August, September,
and October. One (or more) large tropical storm could affect a city at any time between reports of cost data in July
and the following January. Thus our data reflect economic processes independent of and resulting from a hurricane.
For example, there may be a shortage of materials in the months before a hurricane affects a city, but we cannot
resolve the effects of the shortage from those of the hurricane. These issues presumably explain some of the variance
in our data and residual variance of our models.

The way we calculate wind speed at a city certainly contributes to the variance in our models. When we initially
studied the material price and labor wage data, we used the wind speeds along the path of the storms. We improved
this approach by calculating the wind speed at the city from observations of the storm system via the Holland Wind
Profile (Holland, 1980). Better estimates of wind speeds at a city would certainly reduce some of the uncertainty in
these models.

Modeling demand surge is a multivariate problem with an imprecise response variable and unknown explanatory
variables. We select a part of the demand surge phenomenon, precisely define a response variable, and compare
models with different sets of explanatory variables. The available data suggest that wind speed, the number of
tropical storms affecting a city, the year, and the state in which a city is located may contribute to how costs change
after large tropical storms. These variables are presumably proxies for more fundamental contributors to cost changes.
Wind speed and the number of storms are likely proxies for the amount of damage to properties. The year may be a
proxy for underlying economic processes affecting demand for construction materials and labor before the hurricane
season. The state may represent local- or state-level governmental regulations regarding the movement of materials
and labor after a natural disaster. The use of different, additional, or more refined explanatory variables may help
to reduce the variance of our best models.

Despite their limitations, our best models provide insight into one aspect that is believed to be the largest contrib-
utor to demand surge. The use of multilevel regression models allows us to test for the significance of explanatory
variables in a proposed model and identify how much variation in the changes of costs is due to within-group versus
between-group differences. By proposing several models for the cost change of each basket of repair costs, we can
show that one model accounts for the observed data better than another. For the material component baskets, our
best models do not include variables for the wind speed and number of storms; the cost changes in the first half of
the year are sufficient to account for cost changes in the second half of the year. The best models for the cost changes
of the remove & replace and labor component baskets do include variables for both the wind speed and number of
storms, as well as cost changes in the first half of the year.

The models for the remove & replace and labor component baskets account for roughly half of the variability in
the observed data. Wind speed, the number of proximate storms, and cost changes in the first half of the year do not
account for all the variability in the observed data. This suggests that either the explanatory variables we tried must
be refined (for example, by using wind speeds observed at cities not inferred from the storm systems) or we must use
explanatory variables in addition to, or instead of, the ones we tried. Given our best models, most of the uncertainty
in a simulation of cost changes is due to differences between groups defined by U.S. geographic region and year,
not differences within a given region and year. The between-group uncertainty might be reduced by introducing a
group-level variable, such as the number of tropical storms making landfall in a given region and year or the demand
for new construction in the given region and year.

For the material component baskets, the models have more uncertainty than the observed data. In other words,
we could predict a future cost change of the material component basket by sampling from the empirical distribution
defined by observed cost changes, and the uncertainty in this prediction is less than the uncertainty in a prediction
from our best models. We do not recommend the empirical model because the regression analyses suggest that the
cost changes in the first half of the year are significant in predicting the cost change in the second half of the year.
Moreover, our best regression models allow for variability in future observations suggested, but not seen, in past
observations.

There may be situations where a prediction of cost changes during an Atlantic hurricane season is desired, but
there are no available data on the cost changes in the first half of the year. For example, reinsurance contracts are
typically renewed in the last two months of a calendar year, so basket cost changes in the next two quarters cannot
be known. Since our best models all include these explanatory variables, the models cannot be used here in the way
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they are intended. There are at least two ways to make a prediction nonetheless. One possibility is to use median
values for these cost changes (as presented in Section 3.4) or to use a prediction of the cost changes. These values
would be used in the models as if they were known, however, the uncertainties in the resulting predictions would be
lower bounds. The actual uncertainty in such a prediction should be larger than the uncertainty if known values of
cost changes were used. A second possibility is to find a model that does not use cost changes in the first half of
the year as explanatory variables. For the residential, remove & replace and labor component baskets, we proposed
models of this type (see Tables 4 and B.8) but found that different models have lower AIC values. Models for the
commercial, remove & replace and labor component baskets could be found in a similar manner. For the material
component baskets, predictions of cost changes during an Atlantic hurricane season could be made directly from the
observed, empirical distributions of the cost changes from the past nine seasons.

At the beginning of Section 3, we raised several general questions, and we now address them based on the results
of this study. On the Atlantic and Gulf Coasts, the most extreme cost changes occur only when there is a large
proximate storm (that is, a tropical storm within 200 km of a city with a surface wind speed of at least 50 km/hr
inferred from the storm system using the Holland Wind Profile). There can be cost changes of 20 percent or more in
the absence of such a storm, but there are only a few such observations. (See Figures 2 and 8.) There are many more
observations of large cost changes when there is a large proximate storm than when there is not, and theoretically,
we expect large cost changes after such storms. Thus, there is evidence that large proximate storms cause large cost
changes. More intense tropical storms and a greater number of storms affecting a city generally cause higher cost
changes. (See Figures 20 and 21.) The exception is the cost change of the material component basket, which does
not depend on wind speed or the number of proximate storms. This study does not identify any regional or annual
factors that might explain differences in cost changes resulting from the region of the Southern United States where
a city is located or the year of observation.

5 Conclusions

• Changes in labor costs drive the changes in total repair costs. A better understanding of the labor market,
rather than the market for materials, would likely provide a better understanding of why total repair costs
increase after natural disasters. For our total repair cost and labor component baskets, the best models to
predict cost changes include variables accounting for the wind speed of a tropical storm, the number of tropical
storms affecting a city, and the cost changes of the baskets in the first half of the year. All these variables
contribute significantly to the prediction.

• For our material component baskets of repair costs, the best models include variables for cost changes in the
first half of the year, but the models do not include variables for wind speed or the number of storms affecting
the city. Changes in the costs of reconstruction materials do not appear to be affected by Atlantic tropical
storms.

• For the remove & replace and labor component baskets, our best models to predict cost changes—using wind
speed, the number of storms affecting a city, and cost changes in first half of year—account for roughly half of
the observed variability in cost changes during Atlantic hurricane seasons. To explain the remaining half of the
observed variability, one might refine these variables or seek additional explanatory variables.

• Given our best models, there is more variability between groups defined by geographic region of the United
States (specifically, states on the Gulf of Mexico, Florida, or states on the Atlantic Ocean) and year than
variability within a group. Our models could be improved by explaining and modeling these between-group
variations.
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B Additional Figures and Tables

p-value
Basket 2002 2003 2004 2005 2006 2007 2008

RES R&R 0.3232 0.2734 0.0010 0.0002 0.1740 0.0438 0.0000
COM R&R 0.2000 0.7448 0.0002 0.0000 0.4794 0.0438 0.0001
RES LAB 0.4894 0.5931 0.0005 0.0002 0.2625 0.1622 0.0001
COM LAB 0.1167 0.5931 0.0000 0.0001 0.1895 0.5697 0.0001
RES MAT 0.1120 0.0800 0.0038 0.5170 0.3417 0.0025 0.0006
COM MAT 0.0236 0.0020 0.0173 0.9903 0.2947 0.0025 0.0006

Table B.1: P-values from hypothesis tests that observed market cost changes in a given year do not differ between
cities affected and unaffected by large proximate storms

p-value
Basket TX LA MS AL FL GA SC NC VA

RES R&R 0.0006 0.0002 0.0002 0.0003 0.0000 0.4806 0.0392 0.0860 0.9350
COM R&R 0.0000 0.0007 0.0028 0.0003 0.0000 0.4806 0.0707 0.0058 0.5344
RES LAB 0.0006 0.0274 0.0098 0.0002 0.0000 0.1994 0.3950 0.0642 0.9350
COM LAB 0.0000 0.0532 0.0799 0.0012 0.0000 0.1052 0.0562 0.9012 0.5344
RES MAT 0.0000 0.0000 0.6693 0.1766 0.0000 0.1994 0.0236 0.0058 0.5344
COM MAT 0.0020 0.0371 0.6693 0.7096 0.0000 0.1626 0.0158 0.0001 0.1984

Table B.2: P-values from hypothesis tests that observed market cost changes in a given U.S. state do not differ
between cities affected and unaffected by large proximate storms
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Figure B.1: Observed market cost change from July to January categorized by wind speed
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Figure B.2: Observed market cost change from July to January categorized by the number of proximate storms
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Figure B.3: Observed market cost change from July to January categorized by year. Rectangles around box-and-
whiskers indicate that we could not reject the null hypothesis that, in a given year, cost changes in
cities affected by a large proximate storm are drawn from the same population as cost changes in cities
unaffected by such a storm.
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Figure B.4: Observed market cost change from July to January categorized by U.S. state. Rectangles around box-
and-whiskers indicate that we could not reject the null hypothesis that, in a given U.S. state, cost changes
in cities affected by a large proximate storm are drawn from the same population as cost changes in cities
unaffected by such a storm.
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Figure B.5: Observed market cost change by quarter. When there are missing data in the Xactimate databases,
we linearly interpolate the missing datum from the preceding and succeeding quarters. The data as
extracted from the Xactimate databases form the “actual” data sets, and these data sets augmented with
the linearly interpolated points form the “interpolated” data sets.
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Figure B.6: Observed hard cost change from July to January versus wind speed by U.S. region and year (2002–2006)
for the residential labor component basket. Unfilled symbols in the Florida plots (center) are cities in
Northern Florida.
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Figure B.7: Observed hard cost change from July to January versus wind speed by U.S. region and year (2007–2010)
for the residential labor component basket.
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Figure B.8: Observed hard cost change from July to January versus wind speed by U.S. region and year (2002–2006)
for the commercial remove & replace basket. Unfilled symbols in the Florida plots (center) are cities in
Northern Florida.
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Figure B.9: Observed hard cost change from July to January versus wind speed by U.S. region and year (2007–2010)
for the commercial remove & replace basket.
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Figure B.10: Observed hard cost change from July to January versus wind speed by U.S. region and year (2002–2006)
for the commercial labor component basket. Unfilled symbols in the Florida plots (center) are cities in
Northern Florida.
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Figure B.11: Observed hard cost change from July to January versus wind speed by U.S. region and year (2007–2010)
for the commercial labor component basket.
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Figure B.12: Observed hard cost change from July to January versus wind speed by U.S. region and year (2002–2006)
for the commercial material component basket. Unfilled symbols in the Florida plots (center) are cities
in Northern Florida.
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Figure B.13: Observed hard cost change from July to January versus wind speed by U.S. region and year (2007–2010)
for the commercial material component basket.
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Figure B.14: Observed hard cost change from July to January versus wind speed by year (2002–2008) with simple
linear regression for the residential labor component basket
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Figure B.15: Observed hard cost change from July to January versus wind speed by year (2002–2008) with simple
linear regression for the residential material component basket
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Figure B.16: Observed hard cost change from July to January versus wind speed by year (2002–2008) with simple
linear regression for the commercial remove & replace basket
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Figure B.17: Observed hard cost change from July to January versus wind speed by year (2002–2008) with simple
linear regression for the commercial labor component basket
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Figure B.18: Observed hard cost change from July to January versus wind speed by year (2002–2008) with simple
linear regression for the commercial material component basket
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Figure B.19: 95 percent confidence intervals for the intercepts and slopes estimated with simple linear regression by
U.S. region (top), by year (middle), or by region and year (bottom), for the residential labor component
basket. “AS” is Atlantic States; “FL” is Florida; and “GS” is Gulf States.
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Figure B.20: 95 percent confidence intervals for the intercepts and slopes estimated with simple linear regression
by U.S. region (top), by year (middle), or by region and year (bottom), for the residential material
component basket.
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Figure B.21: 95 percent confidence intervals for the intercepts and slopes estimated with simple linear regression
by U.S. region (top), by year (middle), or by region and year (bottom), for the commercial remove &
replace basket. “AS” is Atlantic States; “FL” is Florida; and “GS” is Gulf States.
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Figure B.22: 95 percent confidence intervals for the intercepts and slopes estimated with simple linear regression by
U.S. region (top), by year (middle), or by region and year (bottom), for the commercial labor component
basket.
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Figure B.23: 95 percent confidence intervals for the intercepts and slopes estimated with simple linear regression
by U.S. region (top), by year (middle), or by region and year (bottom), for the commercial material
component basket.
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