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The Applied Technology Council is adapting PEER’s performance-based
earthquake engineering methodology to professional practice. The
methodology’s damage-analysis stage uses fragility functions to calculate the
probability of damage to facility components given the force, deformation, or
other engineering demand parameter (EDP) to which each is subjected. This
paper introduces a set of procedures for creating fragility functions from
various kinds of data: (A) actual EDP at which each specimen failed; (B)
bounding EDP, in which some specimens failed and one knows the EDP to
which each specimen was subjected; (C) capable EDP, where specimen EDPs
are known but no specimens failed; (D) derived, where fragility functions are
produced analytically; (E) expert opinion; and (U) updating, in which one
improves an existing fragility function using new observations. Methods C, E,
and U are all introduced here for the first time. A companion document offers
additional procedures and more examples. �DOI: 10.1193/1.2720892�

INTRODUCTION

BACKGROUND AND OBJECTIVES

A second-generation performance-based earthquake engineering (PBEE-2) proce-
dure has been developed by the Pacific Earthquake Engineering Research (PEER) Cen-
ter and others that estimates the probabilistic future seismic performance of buildings
and bridges in terms of system-level decision variables (DVs), i.e., performance mea-
sures that are meaningful to the owner, such as repair cost, casualties, and loss of use
(dollars, deaths, and downtime). Under contract to the Federal Emergency Management
Agency, the Applied Technology Council has undertaken to transfer the PEER method-
ology to professional practice (ATC 2005). The methodology involves four stages: haz-
ard analysis, structural analysis, damage analysis, and loss analysis. This paper addresses
the damage analysis, whose input is the engineering demand parameters (EDP) calcu-
lated in the structural analysis, and whose output is the damage measure (DM) of each
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damageable structural and nonstructural component in the facility. The analysis uses fra-
gility functions, which in this context give the probability of exceeding a damage state (a
value of DM) as a function of EDP. One such fragility function is required for each com-
ponent type and damage state. Many building-component fragility functions have been
created in the past, but no comprehensive set of procedures exists on how to create them.
This paper summarizes such a standard developed for ATC-58. See Porter et al. (2006)
for more detail, examples, commentary, and alternative approaches.

Damage data come in many forms, but generally comprise knowledge of specimen
damage and the EDP imposed. Table 1 lists methods for six situations. Each addresses
different data and thus they are not interchangeable. For example, Method A is not ap-
plicable when one knows the maximum EDP to which each specimen was subjected, but
not the value of EDP at which specimens actually failed. One cannot use Method C if
some specimens failed.

The methods proposed here are no substitute for understanding the processes that
lead to damage, but are intended to help practitioners and scholars create fragility func-
tions from damage data. No calculus is required, and the only possibly unfamiliar ex-
pression is the Gaussian distribution, typically available in spreadsheet software.

DOCUMENTATION REQUIREMENTS

Four requirements are proposed for documenting fragility functions:
1. Description of specimens. What is the component type or taxonomic group the

fragility function addresses? (See Porter 2005 for an ATC-58 component tax-
onomy.) Where and how many specimens were tested or observed, how are they
counted, and what were their materials, material properties, configuration, and
building code (if applicable)? Provide a bibliographic reference of any data
source.

2. Excitation and EDP. Detail the loading protocol or characteristics of earthquake
motion. Identify the EDP(s) examined that might be most closely related to fail-
ure probability and define how EDP is calculated or inferred from the loading
protocol or observed excitation. Indicate whether EDP is the value at which
damage occurred (Method A data) or the maximum to which each specimen was
subjected (Methods B, C, and U).

Table 1. Analysis methods and data employed

Method name Data used

A. Actual failure EDP All specimens failed at observed values of EDP
B. Bounding EDP Some specimens failed; maximum EDP for each is known
C. Capable EDP No specimens failed; maximum EDP for each is known
D. Derived fragility Fragility functions produced analytically
E. Expert opinion Expert judgment is used
U. Updating Enhance existing fragility functions with new method-B data
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3. Damage evidence and DM. What kinds of physical damage or force-
deformation were observed? Define damage measures (DMs) quantitatively in
terms of repairs required. Damage is assumed to have a repair cost, but note
threats to life-safety or potential for loss of use. Explain how DM is inferred
from damage or force-deformation evidence.

4. Observation summary, analysis method, and results. Present a tabular or graphi-
cal listing of specimens, EDP, and DM. Which method was used to derive the
fragility function (Table 1)? Present resulting fragility function parameters xm

and � and results of tests to establish fragility function quality (discussed be-
low). Provide sample calculations.

DAMAGE STATE PROBABILITY

Fdm�edp� denotes the fragility function for damage state dm, defined as the probabil-
ity that the component reaches or exceeds damage state dm, given a particular EDP
value (Equation 1), and idealized by a lognormal distribution (Equation 2):

Fdm�edp� � P�DM � dm�EDP = edp� �1�

Fdm�edp� = �� ln�edp/xm�
�

� �2�

where � denotes the standard normal (Gaussian) cumulative distribution function (e.g.,
normsdist in Microsoft Excel), xm denotes the median value of the distribution, and �
denotes the logarithmic standard deviation.

We use the lognormal because it fits a variety of structural component failure data
well (e.g., Beck et al. 2002, Aslani 2005, Pagni and Lowes 2006), as well as nonstruc-
tural failure data (Reed et al. 1991 [Appendix J], Porter and Kiremidjian 2001, Badillo-
Almaraz et al. 2006), and building collapse by IDA (e.g., Cornell et al. 2005). It has
strong precedent in seismic risk analysis (e.g., Kennedy and Short 1994, Kircher et al.
1997). Finally, there is a strong theoretical reason to use the lognormal: it has zero prob-
ability density at and below zero EDP, is fully defined by measures of the first and sec-
ond moments—ln�xm� and �—and imposes the minimum information given these con-
straints, in the information-theory sense (Goodman 1985).

Both xm and � are established for each component type and damage state using
methods presented later. The probability that the component is in damage state dm, given
EDP=edp, is given by

P�DM = dm�EDP = edp� = 1 − F1�edp� dm = 0

=Fdm�edp� − Fdm+1�edp� 1 � dm � N

=Fdm�edp� dm = N �3�
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where N denotes the number of possible damage states for the component, in addition to
the undamaged state, and dm=0 denotes the undamaged state. Where N�2 and
�i��j for two damage states i� j, Equation 3 can produce a meaningless negative prob-
ability at some levels of EDP. This situation is addressed later.

CREATING FRAGILITY FUNCTIONS

This section provides mathematical procedures for developing fragility functions.

METHOD A, ACTUAL EDP: ALL SPECIMENS FAILED AT OBSERVED EDP

These are the most informative data for creating fragility functions. They are most
common where DM can be associated with a point on the observed force-deformation
behavior of a component, such as a yield point. Alternatively, specimens are subjected to
increasing levels of EDP. The test is interrupted after each level of EDP is imposed, and
the specimen examined for damage. Let

M�number of specimens tested to failure
i�index of specimens, i� 	1,2 , . . .M

ri�EDP at which damage was observed to occur in specimen i.

From the basic definitions of xm and � �e.g., Ang and Tang 1975�,

xm = exp� 1

M
�
i=1

M

ln ri� � =� 1

M − 1
�
i=1

M

�ln�ri/xm��2 �4�

One tests the resulting fragility function using the Lilliefors goodness-of-fit test (pre-
sented below). If it passes at the 5% significance level, the fragility function is accept-
able.

Example 1. Aslani (2005) provides a table of peak transient drift ratios at which 43
specimens of pre-1976 reinforced concrete slab-column connections experienced crack-
ing of no more than 0.3 mm width, repaired by applying a surface coating. The data are
repeated in Table 2 with original specimen numbers. Calculate the fragility function and
test goodness of fit.

Solution. The data are sorted in order of increasing r, an index i is added, the sta-
tistics ln�ri� and ln�ri /xm�2 calculated and summed. Using Equation 4, xm=0.38, and
�=0.39. The lognormal distribution with these parameters passes the Lilliefors
goodness-of-fit test at the 5% significance level. The math is omitted here, but the test is
illustrated in Figure 1.

METHOD B, BOUNDING EDP: SOME SPECIMENS FAILED, PEAK EDP KNOWN

Here, the data include the maximum EDP to which each of M specimens was sub-
jected, and knowledge of whether the specimen exceeded the damage state of interest.
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Some specimens must be damaged. The method works best where M�25. Data must
not be biased by damage state, i.e., specimens must not be selected because they expe-
rienced damage. The data are grouped into bins by ranges of EDP, where each bin has
approximately the same number of specimens in it. For each bin, one calculates the frac-
tion of specimens that failed and the bin-average EDP. These serve as independent data
points of failure probability and EDP. The following approach converts Equation 2 to a
linear regression problem by taking the inverse Gaussian cumulative distribution func-
tion of each side and fitting a line ŷ=sx+c to the data (e.g., see “probability paper” in
Ang and Tang 1975). Let (cont.)

Table 2. Example 1 slab-column connection damage data; s = specimen, r = peak transient drift
ratio, %

s r s r s r s r s r s r

3 0.43 11 0.28 22 0.40 60 0.54 72 0.19 80 0.43
4 0.30 12 0.35 23 0.36 61 0.40 73 0.28 81 0.50
5 0.28 16 0.31 24 0.28 62 0.80 74 0.28 82 0.70
6 0.65 17 0.31 25 0.20 66 0.50 75 0.40 � ln r −41.6
7 0.22 18 0.28 26 0.50 67 0.50 76 0.74 xm 0.38
8 0.32 19 0.22 27 0.25 68 0.50 77 0.54 � ln�r /xm�2 6.40
9 0.43 20 0.22 28 0.50 69 0.50 78 0.43 � 0.39
10 0.42 21 0.31 59 0.64 71 0.19 79 0.71

(Specimens without PTD data are omitted)

Figure 1. Example 1 fragility function (smooth curve) and sample cumulative distribution

(stepped curve).
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M �number of specimens observed
i �index of specimens, i� 	1,2 , . . .M

ri �maximum EDP to which specimen i was subjected
f i �failure indicator for specimen i, 1 if the specimen failed, 0 otherwise
N �number of EDP bins

N = ��M� �5�

where �� means the largest integer less than or equal to the term inside

j �index of data bins, j� 	1,2 , . . .N

aj �lower EDP bound of bin j

aj = rN�j−1�+1 �6�

Mj � number of specimens with aj �r�aj+1

Mj = �
i=1

M

H�ri − aj� − H�ri − aj+1� j � N

=�
i=1

M

H�ri − aj� j = N

�7�

xj �natural logarithm of the average r within bin j

xj = ln� 1

Mj
�
i=1

M

ri�H�ri − aj� − H�ri − aj+1��� j � N

=ln� 1

Mj
�
i=1

M

riH�ri − aj�� j = N

�8�

mj � number of failed specimens in bin j, i.e.,

mj = �
i=1

M

fi�H�ri − aj� − H�ri − aj+1�� j � N

=�
i=1

M

fiH�ri − aj� j = N

�9�

yj �inverse standard normal distribution of the failed fraction specimens in bin j,
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yj = �−1� mj + 1

Mj + 1
� �10�

where �−1 denotes the inverse standard normal distribution (e.g., normsinv in MS Ex-
cel) and

H�s� = 1 if s � 0, 1/2 if s = 0, 0 if s � 0 �11�

The parameters xm and � are determined by fitting a line ŷ=sx+c to the data:

� =
1

s
= ��

j=1

N

�xj − x̄�2���
j=1

N

�xj − x̄��yj − ȳ��
xm = exp�− c�� = exp�x̄ − ȳ�� �12�

where

x̄ =
1

N
�
j=1

N

xj ȳ =
1

N
�
j=1

N

yj �13�

In Equation 10, 1 is added to numerator and denominator to deal with cases with zero
failures in the bin. Porter et al. (2006) presents an alternative approach using a least-
squares fit to the binary failure data, i.e., to the pairs of EDP and a binary (0,1) failure
indicator. The alternative approach avoids errors associated with bin-average EDPs.

Example. Consider the (imaginary) damage statistics in Figure 2, which depicts mo-
tor control centers (MCCs) observed after various earthquakes in 45 facilities. Each box
represents one specimen. Crosshatched boxes represent MCCs that experienced notice-
able earthquake effect such as shifting but that remained operable. Black boxes represent
MCCs that were inoperable after the earthquake and required service or replacement
(potentially causing downtime). Each stack represents one facility. Calculate the fragility
function in terms of PGA, binning 0.15–0.24 g, 0.25–0.34 g, etc.

Figure 2. Example 2 damage data.
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Solution. The number of bins, N, and the lower EDP bounds, aj, are dictated by the
available data: N=5 bins with lower bounds of 0.15 g, 0.25 g, etc. The values of Mj and
mj are found by counting all boxes and black boxes, respectively, in Figure 2, in each
bin, and are shown in Table 3. The value of M is found by summing: M=�Mj=260.
Values xj and yj are calculated as xj=ln�r̄j�, and yj=�−1��mj+1� / �Mj+1��. Average val-
ues are calculated as shown: x̄=−0.99, ȳ=−1.05, according to Equation 13. For each
bin, the values of xj− x̄ and yj− ȳ are calculated as shown. Then, � and xm are calculated
as shown in Equation 12:

� =
0.753

1.204
= 0.63 xm = exp�− 0.99 + 1.05 · 0.63� = 0.72g

The results can be checked by plotting y versus x and fitting a line, as shown in Fig-
ure 3: � is the inverse of the slope of the trendline, 1 /1.60=0.62, and xm is the value of
r at which the line has a y-value of 0, i.e., xm=exp�−0.53/1.60�=0.72.

Table 3. Example 2 solution data

j aj�g� r̄j�g� Mj mj xj yj xj− x̄ yj− ȳ �xj− x̄�2 �xj− x̄��yj− ȳ�

1 0.15 0.2 52 0 −1.61 −2.08 −0.623 −1.031 0.388 0.642
2 0.25 0.3 48 4 −1.20 −1.27 −0.217 −0.223 0.047 0.049
3 0.35 0.4 84 8 −0.92 −1.25 0.070 −0.202 0.005 −0.014
4 0.45 0.5 35 15 −0.69 −0.14 0.294 0.907 0.086 0.266
5 0.55 0.6 41 12 −0.51 −0.50 0.476 0.549 0.226 0.261
�= 260 −4.93 −5.23 0.753 1.204
Avg= −0.99 −1.05
Figure 3. Checking Example 2 results.
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METHOD C, CAPABLE EDP: NO SPECIMENS FAILED, EDPS ARE KNOWN

Method C is introduced here to deal with cases with no observations of DM�dm
and M observations of no damage occurrences of DM�dm. It addresses the best case
for this type of data, i.e., many specimens, none of which had apparent distress, and sev-
eral of which were subjected to EDP near the maximum value. It also addresses the
more general case, including situations where few specimens experienced EDP near the
maximum, or where some specimens experienced distress short of the damage state of
interest, or both.

The procedure creates a bin-average subjective failure probability S for a bin of
specimens at the high end of the tested range of EDP, and assigns a response value to
this bin of specimens. The bin includes all specimens with some distress, the lowest of
which has EDP=rd, and all specimens without distress that were subjected to EDP of at
least rd or 0.7 times the largest level of EDP to which any specimen was subjected. The
specimens in this bin without apparent distress are assigned 0% subjective failure prob-
ability, 10% for specimens with distress not suggestive of imminent failure, and 50% for
specimens with distress suggestive of imminent failure. It assigns to this bin the median
EDP of all the specimens in the bin, denoted by rm. Combining the point on the fragility
function (rm, S) with an assumed �=0.4 produces a fragility function consistent with the
assigned subjective failure probabilities. The precise interpretation of “distress sugges-
tive of imminent failure” is left to the analyst. To create a fragility function from
Method-C data, let

ri�EDP experienced by specimen i �i=1,2 , . . .M�
rmax=maxi	ri

rd�minimum EDP experienced by any specimen with distress
ra�the smaller of rd and 0.7rmax

MA�number of specimens without apparent distress and with ri�ra

MB�number of specimens at any ri with distress not suggestive of imminent failure
MC�number of specimens at any ri with distress suggestive of imminent failure
rm=rmax if MB+MC � 0

=0.5· �rmax+ra� otherwise
S�subjective failure probability at rm

S = �0.5MC + 0.1MB�/�MA + MB + MC� �14�

Use Table 4 to determine Fdm�rm� and Equation 15 to determine � and xm.

� = 0.4

z = �−1�Fdm�rm��

xm = rmexp�− z�� �15�

Example. ANCO Engineers, Inc. (1983) performed shake-table tests on ceiling systems
with various lateral restraints. Ten tests simulated conditions with the ceiling attached to
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a perimeter wall that provided a boundary. Peak diaphragm acceleration (PDA) from
nine of these tests is recorded in Table 5. Failure required replacement of damaged grid
and tiles. Calculate the fragility function.

Solution. (a) Here, ri=PDA for specimen i, rmax=1.03 g, rd=0.76 g, 0.7rmax

=0.72 g, ra=min�0.76 g,0.72 g�=0.72 g, MA=1, MB=0, and MC=2. By Equation 14,
S= �0.5·2+0.1·0� / �1+0+2�=0.33. Since MB+MC�0, rm=0.5· �rmax+ra�=0.88 g.
From Table 4, S�0.3, so Fdm�rm�=0.4. From Equation 15, �=0.4 and xm=1.11rm

=0.97 g peak diaphragm acceleration.

METHOD D, DERIVED FRAGILITY FUNCTIONS

The capacity of some components can be calculated by modeling the component as
a structural system, and determining the EDP (e.g., acceleration or shear deformation)
that would cause the system to reach dm. Other components may be amenable to fault
tree analysis; e.g., see Vesely et al. (1981). Let r denote the calculated capacity of the
component to resist damage state dm, including consideration of any anchorage or brac-
ing. Then

xm = 0.92r

� = 0.4 �16�

Equation 16 assumes that �=0.4 and calculates the median of a lognormal distribution
from the mean value and �.

Table 4. Values of exp�−z��

Conditions Fdm�rm� Z exp�−z��, �=0.4

MA�3 and S=0 0.01 −2.326 2.54
MA�3 and S�0.075 0.05 −1.645 1.93
0.075�S�0.15 0.10 −1.282 1.67
0.15�S�0.3 0.20 −0.842 1.40
S�0.3 0.40 −0.253 1.11

Table 5. Example 3 ceiling test data

ID Test, run PDA (g) Failure ID Test, run PDA (g) Failure

5 7-2 0.39 FALSE 12 6-3 0.69 FALSE
7 6-1 0.48 FALSE 13 7-4 0.76 INCIPIENT
8 4-1 0.49 FALSE 14 5-5 0.79 FALSE

10 5-1 0.51 FALSE 16 6-4 1.03 INCIPIENT
11 7-3 0.52 FALSE
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METHOD E, EXPERT OPINION

There are several methods for eliciting expert opinion, from ad hoc to structured pro-
cesses involving multiple experts, self-judgment of expertise, and iteration to examine
major discrepancies between experts. To properly elicit expert opinion on uncertain
quantities requires attention to clear definitions, biases, assumptions, and expert quali-
fications. The method (introduced for the first time here) employs Spetzler and von Hol-
stein (1972) for probability encoding and Dalkey et al. (1970) for expert qualification,
with some useful simplifications. See Porter et al. (2006) for more discussion of this
method.

To use Method E, select experts with professional experience in the design or post-
earthquake observation of the component. Solicit their advice using Figure 4. Represen-
tative images should be offered to the experts and recorded. If an expert refuses to pro-
vide estimates or limits them to certain conditions, either narrow the component
definition accordingly and iterate, or ignore that expert’s response and analyze the re-
maining ones. Let

N �number of experts providing judgment about a value
i �index of experts, i� 	1,2 , . . .N

xmi �estimated median EDP of expert i
xli �estimated lower-bound EDP of expert i
wi �level of expertise of expert i
	 �1.5

xm =

�
i=1

N

wi
	xmi

�
i=1

N

wi
	

xl =

�
i=1

N

wi
	xli

�
i=1

N

wi
	

� =
ln�xm/xl�

1.28
�17�

If Equation 17 produces ��0.4, either justify �, or replace � and xm using

� = 0.4

xm = 1.67xl �18�
Regarding Equation 18, it is common for experts to express overconfidence in an

uncertain variable, such as the EDP at which damage will occur. If the results of the
survey produce ��0.4, and this low value of � cannot be justified, use the judged xl to
anchor the fragility function, apply �=0.4, and calculate the resulting value of xm.
Kennedy and Short (1994) show that by establishing the EDP at which the component
has 10% failure probability, the overall reliability of the component is insensitive to �,
hence the value of directly encoding experts’ judgment of this value in particular.
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Example. Stone cladding on the exterior of retail buildings may fall in earthquakes.
Consider 2-in. x 6-in. x 1-3/16-in. stone veneer adhered to a concrete masonry unit sub-
strate with thin-bed mortar (liquid latex mixed with Portland cement, 100% coverage).
Create a fragility function for the probability that any given stone would fall from the
building (posing a life-safety threat) and require replacement, as a function of the peak
transient drift ratio of the story on which the stone is applied.

Solution. Figure 4 was used to solicit judgment from three (imaginary) engineers on
the fragility of the component, using the following definitions.

Figure 4. Form for soliciting expert judgment on component fragility.



CREATING FRAGILITY FUNCTIONS 483
Component: Stone cladding 1, defined as 2-in. x 6-in. x 1-3/16-in. stone veneer adhered
to a concrete masonry unit substrate with thin-bed mortar �liquid latex
mixed with Portland cement, 100% coverage�

Damage state: Falling, defined as a given panel becoming delaminated from CMU and
falling

EDP: PTD, defined as the peak transient drift ratio of the story and column
line of stone veneer

Responses are shown in columns 2, 3, and 4 of the following:

(1) (2) (3) (4) (5) (6) (7)

Response i
Expertise

wi

Median
xmi

Lower
bound xli wi

1.5 wi
1.5 ·xmi wi

1.5 ·xli

1 2 0.003 0.0015 2.83 0.0085 0.0042
2 1 0.005 0.001 1.00 0.0050 0.0010
3 2 0.010 0.005 2.83 0.0283 0.0141

�= 6.66 0.0418 0.0194

By Equations 17 and 18,

xm =
0.0418

6.66
= 0.63 % xl =

0.0194

6.66
= 0.29 % � =

ln�0.0063

0.0029
�

1.28
= 0.60

METHOD U, UPDATING A FRAGILITY FUNCTION WITH NEW DATA

Here, the data are a pre-existing fragility function and M specimens with known
damage state and maximum EDP. It is not necessary that any of the specimens failed.
Let

M �number of specimens observed
i �index of specimens, i� 	1,2 , . . .M

ri �maximum EDP to which specimen i was subjected
f i �1 if specimen i failed �reached or exceeded damage state dm�, 0 otherwise
xm �median from pre-existing fragility function
� �logarithmic standard deviation from pre-existing fragility function
xm� �revised median of the fragility function
�� �revised logarithmic standard deviation of the fragility function

One calculates the revised median and logarithmic standard deviation as follows:
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wj� =

wj�
i=1

M

L�i, j�

�
j=1

5

wj�
i=1

M

L�i, j�

xm� = exp��
j=1

5

wj�ln�xmj�� �� = �
j=1

5

wj�� j �19�

where

L�i,j� = 1 − �� ln�ri/xmj�
0.707�j

� if fi = 0 = �� ln�ri/xmj�
0.707�j

� if fi = 1 �20�

xm1 = xm4 = xm5 = xm �1 = �2 = �3 = � w1 = 1/3

xm2 = xme−1.22� �4 = 0.64� w2 = w3 = w4 = w5 = 1/6

xm3 = xme1.22� �5 = 1.36� �21�
Method U is introduced for the first time here. See Porter et al. (2006) for an ex-

ample. The method uses Bayes’ Theorem (e.g., Ang and Tang 1975) to revise xm and �
of an existing fragility function with new observations of M specimens whose EDP and
damage state have been observed. Some explanation may be useful to readers unfamiliar
with Bayesian updating. It is recognized here that xm and � are themselves uncertain,
and can be assigned probability distributions. The distributions are revised based on how
likely it is that the observed damage would have occurred for various possible values of
xm and �.

For those familiar with Bayesian updating, the prior probability distribution of xm is
taken as lognormal with median equal to the xm value in the pre-existing fragility func-
tion, and logarithmic standard deviation taken as 0.707
� of the pre-existing fragility
function, consistent with a compound lognormal fragility function and �r=�u=0.707�.
The prior of � is taken as normal with expected value equal to the � of the pre-existing
fragility function, and coefficient of variation (COV) of 0.21. This COV is selected be-
cause it provides for 98% probability that � is within the bounds of 0.5 and 1.5 times the
prior �, which agrees with the observed range for � of 0.2 to 0.6. The distributions of xm

and � are assumed to be independent. Their joint distribution is approximated by five
discrete points (xmj, �j), each with probability-like weight wj (where j=1,2 , . . .5). Using
a method described in Julier (2002), the values of xmj, �j, and wj are chosen so that the
first five moments of the discrete joint distribution match those of the continuous joint
distribution. Figure 5 illustrates the principle, showing a probability density function of
two variables xm and � (the surface) and the discrete points (bars), each with an associ-
ated weight (indicated by bar height). The first few moments of the points (the mean,
variance, etc.) match those of the surface. In Equation 19, the w values are updated to
reflect the observations, and xm and � are updated using the new w�s.
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ASSESSING FRAGILITY FUNCTION QUALITY

The previous section provided mathematical procedures for developing fragility
functions. Issues associated with the quality of those fragility functions are now ad-
dressed, particularly the treatment of competing EDPs, goodness-of-fit testing, dealing
with fragility functions that cross, and how to assign an overall quality level to a fragility
function.

CONSIDERING COMPETING EDPS

One may be uncertain which is the best EDP to use. In such a case, create fragility
functions for each alternative and choose the fragility function with the lowest �. See
Porter et al. (2006) for choosing between EDPs with differing COV.

GOODNESS OF FIT

A goodness-of-fit test checks that an assumed distribution adequately fits the data.
The Lilliefors (1967) test is used here. It is a special case of the Kolmogorov-Smirnov
(K-S) test, applicable when the parameters of the distribution are estimated from the
same data as are being compared with the distribution, as is the case here. To perform
the test, calculate

D = maxX�Fdm�edp� − SM�edp�� �22�

over the range 0�edp�max	ri
, where SM�edp� is given by

SM�edp� =
1

M
�
i=1

M

H�ri − edp� �23�

and H is given by Equation 11. If D�Dcrit, the fragility function passes the goodness-
of-fit test (	=0.05 significance level is used here; the equation approximates Lilliefors’
table):

Dcrit = 0.895/�M0.5 − 0.01 + 0.85M−0.5� �24�

Figure 5. Substituting a sample of five points (bars) for a continuous joint distribution
(surface).
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FRAGILITY FUNCTIONS THAT CROSS

Some components have two or more fragility functions. Any two lognormal fragility
functions i and j with medians xmj�xmi and logarithmic standard deviations �i��j

cross if:

edp � exp��jln xmi − �iln xmj

�j − �i
�: �i � �j

edp � exp��jln xmi − �iln xmj

�j − �i
�: �i � �j �25�

This produces a (meaningless) negative probability of being in damage state i under
Equation 3b. Figure 6a illustrates the point: F2 has a higher � than F1, and F3 has a
lower � than F2. Two methods are proposed to deal with the problem. Either replace
Equation 2 with

Fi�edp� = maxj��� ln�edp/xmj�
�j

�� for all j � i �26�

as shown in Figure 6b, or find xm and � values for each damage state, and then revise
them:

�i� =
1

N
�
i=1

N

�i for all i

xmi� = exp�1.28��� − �i� + ln xmi� �27�

as shown in Figure 6c. Equation 27 adjusts the functions so they match the originals at
10% failure probability, with the same justification as discussed in Method E.

ASSIGNING A SINGLE QUALITY LEVEL TO A FRAGILITY FUNCTION

Fragility functions come from data with varying quantity and quality. Table 6 offers
a system to assign a high, medium, or low quality to a fragility function. It is based
solely on the authors’ judgment. The analyst should report the quality of fragility func-
tions used with any loss estimate.

CONCLUSIONS

Six methods for creating fragility functions were presented, including three new
ones: one for dealing with cases where no failure has been observed, another for situa-
tions where one must rely on expert opinion, and a third for updating an existing fragil-
ity function with new damage observations. The procedures are under consideration as a
standard for ATC-58, a technology-transfer project by the Applied Technology Council
to bring PEER’s performance-based earthquake engineering methodology to practice.
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Figure 6. (a) Fragility functions that cross; (b) solution with Equation 26; and (c) Equation 27.
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The procedures are intended for engineering professionals who will eventually use
PBEE. Little unfamiliar math is involved, and no calculus. A larger document, Porter et
al. (2006), presents these procedures with more commentary, some alternative ap-
proaches, and more sample problems.
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